

From: pennyellson12@gmail.com
To: [Council, City](#); [Lait, Jonathan](#)
Cc: [Architectural Review Board](#); [Planning Commission](#); pabacpaloalto@googlegroups.com
Subject: FW: 800 San Antonio Road
Date: Thursday, May 2, 2024 2:11:28 PM
Attachments: [image001.png](#)
[image002.png](#)

Some people who received this message don't often get email from pennyellson12@gmail.com. [Learn why this is important](#)

Hi Jonathan,

Thank you for your reply.

We can all work together to ensure that the San Antonio Road special setback is preserved for its intended use for bicycle, pedestrian, transit facilities. Let's make sure renderings and plans going forward do not fill the special 24-foot San Antonio Road setback with street furniture and plantings that will have to be removed later in order to put the special setback to its intended use. Drawings should clearly lay out which parts of the space are reserved for bikes, pedestrians and transit facilities. This transportation special setback should be in addition to space applicants wish to use for other important amenities. A lively, new residential street needs space for all of these things, so that the people who live there will feel like part of our community and so they will be safely, conveniently and comfortably connected via transit and foot-powered transportation.

I look forward to seeing how staff makes the special setback work toward the City of Palo Alto Comprehensive Plan Transportation Element's many Goals, Policies and Programs that require the city to *"Create a sustainable transportation system, complemented by a mix of land uses and other methods to reduce GHG emissions and the use of single-occupancy motor vehicles."* (Goal T-1)

I ask, going forward, the city's valued advisory committees (ARB, PTC, PABAC) to also watch carefully to make sure the special setback is preserved for future bicycle, pedestrian and transit facilities.

Since all of these projects will require significant transportation work, and we all recognize the significant alternative transportation deficits of San Antonio Road's existing profile, I hope that, as these high density housing projects fill the pipeline, they also will come to PABAC for review. Same for large projects that are likely to have significant traffic impacts in any other part of the city.

It takes a village to build a great village.

Best,

Penny Ellson
(speaking as an individual)

From: Lait, Jonathan <Jonathan.Lait@CityofPaloAlto.org>
Sent: Thursday, May 2, 2024 9:41 AM

To: Ellson, Penny <pennyellson12@gmail.com>
Cc: Shikada, Ed <Ed.Shikada@CityofPaloAlto.org>; City Mgr <CityMgr@cityofpaloalto.org>; Kallas, Emily <Emily.Kallas@cityofpaloalto.org>; Frick, Coleman <Coleman.Frick@CityofPaloAlto.org>; Krishnan, Vishnu <Vishnu.Krishnan@CityofPaloAlto.org>; Kamhi, Philip <Philip.Kamhi@CityofPaloAlto.org>
Subject: RE: 800 San Antonio Road

Hi Penny, thanks for your email.

I reviewed the report and discussed with staff. While possible future use of a portion of the 24 foot special setback has been clearly discussed with the applicant, PTC and reflected on the project plans, the draft record of land use action did not have a condition memorializing this understanding. A City Council at-places memo will be published today adding such a condition as part of the staff recommendation and we'll mention this in our staff presentation on Monday.

Relatedly, staff is working to prepare a request for proposals for the San Antonio Road area plan that I hope to have released in June/July. This will be the comprehensive planning project that you and others have been anticipating. There will be ample opportunity for community engagement and I am happy to arrange a specific meeting with you and our consultants when selected to make sure you have a chance to share your local knowledge and perspective.

Thank you again for the email below allowing us to correct the record of land use action in advance of the council meeting.

Take care,

Jonathan

JONATHAN LAIT
Director
Planning and Development Department
(650) 329-2679 | jonathan.lait@cityofpaloalto.org
www.cityofpaloalto.org

[Provide Feedback on Planning and Administration Services](#)

From: pennyellson12@gmail.com <pennyellson12@gmail.com>
Sent: Thursday, April 25, 2024 9:52 PM
To: Council, City <city.council@cityofpaloalto.org>; Shikada, Ed <Ed.Shikada@CityofPaloAlto.org>
Subject: 800 San Antonio Road

Some people who received this message don't often get email from pennyellson12@gmail.com. [Learn why this is important](#)

CAUTION: This email originated from outside of the organization. Be cautious of opening attachments and clicking on links.

Honorable City Council and City Manager Shikada,

I am looking at the plans for 800 San Antonio. My recollection is Mr. Lait had said a special setback would be incorporated in projects on San Antonio Road to provide room for future bike/ped facilities. I see a reference to the setback in the plans, but I also see a walking space, trees and plantings shown in areas where one might put bike facilities. Exactly how will this setback be used for bikes/peds/transit facilities?

San Antonio Road currently provides sharrows which are completely unsafe facilities on a multi-lane arterial posted 35MPH. These buildings have bike parking, but no way to safely ride a bike into town to school or to anywhere else—even for very skilled and fearless bicyclists.

I would appreciate the favor of a reply. With the number of large housing and hotel projects in the pipeline and already approved for this area, I am worried that too little has been done to plan for transportation and other needs, and soon it may be too late. Good planning is not reactive and piecemeal. The recent report by college students was very nice, but it was a learning exercise for a nice group of kids who had very shallow knowledge of the area. It was not a substitute for a comprehensive professional planning process.

What is the PLAN for bike and pedestrian and transit facilities on San Antonio Road? What is the community services facility plan for Cubberley?

As a south Palo Alto resident, I am concerned about transformative changes that are being made rapidly to this part of town with little meaningful planning or engagement of citizens.

Thank you for considering my comments.

Sincerely,

Penny Ellson

 Virus-free www.avg.com

From: [Shani Kleinhaus](#)
To: [Architectural Review Board](#)
Cc: [Cha, Kelly](#); [French, Amy](#); [Raybould, Claire](#); [Frick, Coleman](#); [Dashiell Leeds](#)
Subject: Bird collisions study from Mountain View, and study of Blue Light
Date: Saturday, May 4, 2024 8:05:47 PM
Attachments: [HTH-600 Clyde Avenue Avian Collision Monitoring Final Report Redacted copy.pdf](#)

You don't often get email from shani@scvas.org. [Learn why this is important](#)

CAUTION: This email originated from outside of the organization. Be cautious of opening attachments and clicking on links.

Dear Kelly and Commissioners,

I received permission from the City of Mountain View to share a bird collision monitoring study that was conducted at 600 Clyde Avenue, **please see attached**. Please note:

- This location is not adjacent to any sensitive habitats, such as a riparian corridor.
- Some (but not all) of the facades of this building's facades have been retrofitted with frit patterns to provide visual view and reduce the potential for bird strikes.

It is sad to see that so many birds collided with the building facades. During the survey period (October 2020-April 2022) the monitoring effort discovered 35 fatalities, plus 69 likely fatalities evident by imprints of feather spots that show that a bird has hit the window (and may have survived, or the carcass likely removed by predators).

It is interesting that **of the 53 observations that included evidence on glass (imprints or feather spots), 52 occurred on untreated glass and only 1 occurred on bird-safe treated glass. In addition, most of the collisions occurred on the first floor of the building.**

I would also like to share In a recent study from the University of New Mexico, published in the journal Conservation Biology in March. This study reveals that [blue light significantly increases the risk of building collisions for night-migrating birds](#). The study was conducted in Singapore, and so the bird species are different from those found in our region, but since most migratory birds fly at night, the general conclusions should apply here as well.

Thank you,

Shani

Shani Kleinhaus, Ph.D.
Environmental Advocate
Santa Clara Valley Audubon Society
22221 McClellan Rd.
Cupertino, CA 95014
650-868-2114
advocate@scvas.org

H. T. HARVEY & ASSOCIATES

Ecological Consultants

50 years of field notes, exploration, and excellence

**600 Clyde Avenue
Avian Collision Monitoring Final Summary Report
October 2020–April 2022**

Project #3475-43

Prepared for:

**Bianca Hong
Google LLC**

Prepared by:

H. T. Harvey & Associates

August 30, 2022

Table of Contents

Section 1. Introduction.....	1
Section 2. Methods.....	2
Section 3. Results.....	4
3.1 Summary of Monitoring Data	4
3.2 Additional Site Visits.....	8
Section 4. Assessment.....	9
4.1 Collision Rate	9
4.2 Conservation Risk	9
4.2.1 Potential Fatalities	10
4.2.2 Assessment of Population-Level Effects	10
4.3 Corrective Actions.....	13
Section 5. References	14

Figures

Figure 1. The average number of collisions detected by month throughout the monitoring period.....	6
Figure 2. Evidence of collisions with the west façade	7
Figure 3. Evidence of collisions with the east façade.....	7
Figure 4. Evidence of collisions with the north façade.	8
Figure 5. Evidence of collisions with the south façade.	8

Tables

Table 1. Summary of Collision Evidence by Species	4
Table 2. Summary of Collision Evidence by Type	6

Appendices

Appendix A. Avian Collision Monitoring Data	A-1
---	-----

List of Preparers

Steve Rottenborn, Ph.D., Principal/Senior Wildlife Ecologist
Robin Carle, M.S., Project Manager/Senior Wildlife Ecologist
Will Lawton, B.S., Wildlife Ecologist

Section 1. Introduction

The City of Mountain View required the 600 Clyde Avenue project to implement a *Bird Strike Monitoring Plan* (Plan) to monitor avian collisions with the commercial office building on the project site. The facades of this building are predominantly glazed, increasing the potential for avian collisions. The Plan required weekly to biweekly monitoring for 18 months following completion of project construction in September 2020 (WRA Environmental Consultants 2017). H. T. Harvey & Associates monitored avian collisions with the building from October 2020 to April 2022 per the Plan requirements, and submitted monthly reports to the City summarizing the monitoring methods and data for each month. This final report provides a summary of the avian collision monitoring methods and data, as well as an assessment of collision frequency with the building to determine if corrective actions are needed to ameliorate collision risk in accordance with Plan requirements.

Section 2. Methods

Per the requirements of the Plan, qualified H. T. Harvey & Associates ornithologists conducted avian collision monitoring at 600 Clyde Avenue once weekly from October–November 2020, every two weeks or twice monthly from December 2020–March 2021, once weekly from April–May 2021, every two weeks or twice monthly from June–August 2021, once weekly from September–November 2021, every two weeks or twice monthly from December 2021–March 2022, and once weekly in April 2022. This monitoring took place between the hours of 11:00 a.m. and 1:00 p.m.

H. T. Harvey & Associates ornithologists' qualifications are as follows:

- Matthew Louder is a biologist with a Ph.D. in Ecology from the University of Illinois, and he is familiar with the identification of local bird species. In addition to conducting his post-graduate research on songbird behavior, Matthew has worked as an avian survey technician conducting nesting bird surveys and point counts for a number of projects over the past 10 years.
- William Lawton is a biologist with a B.S. in Wildlife Management and Conservation from Humboldt State University. He has worked as an avian survey technician for several projects in the greater Bay Area and California over the past six years, including numerous H. T. Harvey & Associates projects, and has spent hundreds of hours conducting passerine nest searches and point counts.
- Jazmine Jensen is an ornithologist with a B.A. in Environmental Studies from the University of California, Santa Cruz. She has worked as an avian survey technician for several projects in the greater Bay Area over the past several years, including numerous H. T. Harvey & Associates projects, and has extensive experience conducting surveys for nesting birds as part of the Santa Cruz County Breeding Bird Atlas II project.

Matthew, William, and Jazmine are familiar with the Plan and the identification of local bird species. Thus, they are well-qualified to conduct these surveys.

In addition, with concurrence from the project proponent, H. T. Harvey & Associates ornithologists conducted 16 additional monitoring visits from September to November 2021. These additional visits were conducted based on evidence from previous monitoring studies that more frequent monitoring of a building (i.e., more frequent than weekly or biweekly) helps ensure detection of collision evidence, in case scavengers may be removing carcasses from the site before they are observed (Hager et al. 2012, Ocampo-Peñuela et al. 2016). The additional visits were timed during the fall and early winter because avian survey data collected in nearby areas (e.g., at the Sunnyvale Municipal Golf Course, Encinal Park, and the North Whisman area of Mountain View) from November 2015–January 2017 as part of a long-term avian monitoring program (Google Native Habitat Landscape Long-term Monitoring Study, unpublished data) indicates bird activity in the project vicinity is highest at this time of year. In addition, the additional visits were timed variably throughout the day (from

first light to mid-afternoon) based on recommendations in the literature to vary the timing of site visits to improve detection probability (Hager and Cosentino 2014).

During all visits, monitors followed a set route that covered the perimeter of the office building at ground level as well as the Level 5 roof terrace, searching the ground, on and within all shrubs and ground cover, and on and underneath all structures (e.g., trash cans) within 30 feet of the building periphery for dead or injured birds. As recommended in the standard protocol for collision monitoring developed by Hager and Cosentino (2014), they performed two passes around the building, searching the ground in opposite directions. In addition, they searched for detectable evidence of collisions (e.g., imprints, blood, or feathers on glass) on the windows of each floor of the building by walking along the interiors of the windows on Levels 2–5 (the building is currently vacant with no interior walls, which allows the biologists to walk along the windows on each floor) and along the exteriors of the windows on Level 1.

Upon the detection of evidence of a collision, the incident was assigned a unique identification number and the following information was collected: date, evidence type (carcass, imprint, feather spot, etc.), bird species (if it could be determined), location, and a photograph. Often, the available evidence was insufficient to identify a bird to species (typically, a window imprint that could have been made by more than one species, or a feather spot lacking flight and tail feathers necessary to identify the bird to species). When we were unable to identify a bird to species, we recorded to the most specific level possible (e.g., *passerine*, *sparrow*, *unidentified*, etc.).

Window imprints and feather spots (i.e., a pile of feathers) provide secondary evidence of a collision, but do not necessarily indicate that a fatality occurred. Because the Plan requires documentation of the number of carcasses (i.e., fatalities) detected, we have defined a confirmed fatality as follows: a whole dead bird; a partial dead bird consisting of a concentration of feathers with bones or skin; or a feather spot with at least two or more primary flight feathers, five or more tail feathers, or 10 or more feathers of any type concentrated together in an area 1 square meter or smaller without any bone, beak, or significant amounts of flesh or skin. If insufficient evidence was present to determine if the bird had survived, we classified the incident as a collision and a “potential fatality” but not as a confirmed fatality. Potential fatalities may have involved birds that died from the collision but whose remains could not be detected (e.g., because they were removed by a scavenger or because the birds were able to fly some distance before succumbing) or birds that collided with glass but were not mortally wounded.

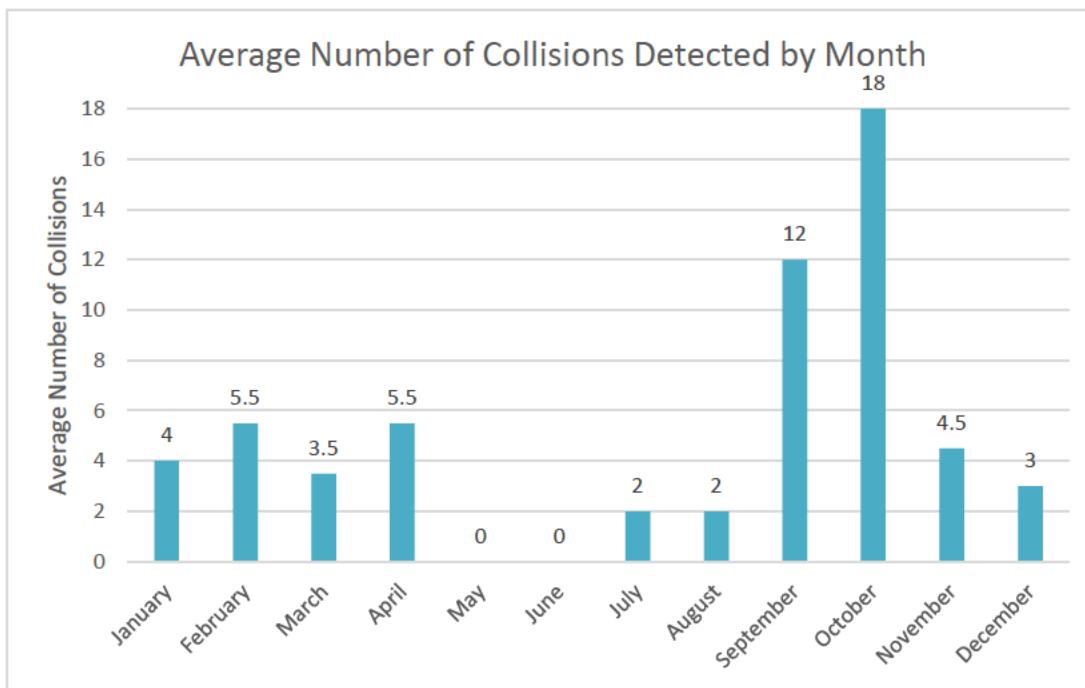
Section 3. Results

3.1 Summary of Monitoring Data

H. T. Harvey & Associates' avian collision monitoring data for the 600 Clyde Avenue office building, including data from the additional site visits conducted from September–November 2021, are provided in Appendix A. A summary of the collision evidence detected by species is provided in Table 1 below.

Table 1. Summary of Collision Evidence by Species

Species	Confirmed Fatalities	Potential Fatalities	Total Incidents of Collision Evidence
Unidentified passerine	4	51	55
Anna's hummingbird	20	4	24
Unidentified bird	1	7	8
Yellow warbler	1	2	3
Pine siskin	2	1	3
House finch	1	1	2
Brown creeper	1	0	1
Golden-crowned sparrow	1	0	1
Hermit thrush	0	1	1
Lesser goldfinch	0	1	1
Lincoln's sparrow	1	0	1
Ruby-crowned kinglet	1	0	1
Unidentified hummingbird	1	0	1
Orange-crowned warbler	1	0	1
<i>Zonotrichia</i> sp.	0	1	1
Totals	35	69	104


Evidence of 104 collisions was detected with the 600 Clyde office building between October 2020 and April 2022, representing at least 11 species (Table 1). A total of 35 incidents of collision were confirmed fatalities, while 69 were potential fatalities. As discussed further under Section 4.2 *Conservation Risk* below, collisions involved in potential fatalities may or may not have resulted in a bird's death.

For the majority of collisions detected (60, or 57.7% of all collisions) insufficient evidence was present (e.g., a carcass, feathers, or a clear imprint on glass) to identify the bird to species; however, 51 of these unidentified birds were identifiable to the order Passeriformes (perching birds), one was identifiable to the order Trochilidae (hummingbirds), and one was identifiable to the genus *Zonotrichia* (crowned sparrows). All species listed in Table 1 other than hummingbirds and unidentified birds are passerines. There was no evidence (e.g., similar imprints, similar feathers, or multiple collisions detected together) that the suite of *unidentified passerines* and *unidentified*

birds included a high proportion of fatalities of any one species, or of resident vs. migrant vs. wintering birds; rather, evidence for these collision incidents was variable and detected year-round. In addition, based on the location of the project site (which is not adjacent to any sensitive habitats, such as a riparian corridor), the bird species observed anecdotally on the site during the course of the monitoring, and the abundance and diversity of bird species that occur in the local area (Cornell Lab of Ornithology 2022), it is our opinion there is no evidence that rare species of conservation concern (e.g., state and federally listed species or California species of special concern) or raptors compose a large proportion of the unidentified individuals detected during the monitoring. Thus, for the purpose of this assessment, we assume that unidentified species occurred in approximately similar distributions as the identified species detected during the course of the monitoring (Table 1), but likely also included some other common species that are abundant in the local area at various times of year (e.g., yellow-rumped warblers [*Setophaga coronata*] and cedar waxwings [*Bombycilla cedrorum*]).

For birds that could be identified to species, the highest incidents of collisions detected by any one species was for Anna's hummingbirds (*Calypte anna*) (24 documented collisions). In addition, at least 71 incidents of collisions by passerines (including both identified and unidentified individuals) were detected during the monitoring period, representing 68.3% of documented collisions. We documented multiple incidents of collisions by yellow warblers (*Setophaga petechia*) (3 documented collisions), pine siskins (*Spinus pinus*) (3 documented collisions), and house finches (*Haemorhous mexicanus*) (2 documented collisions). Single incidents of collisions were documented for brown creeper (*Certhia americana*), golden-crowned sparrow (*Zonotrichia atricapilla*), hermit thrush (*Catharus guttatus*), lesser goldfinch (*Spinus psaltria*), Lincoln's sparrow (*Melospiza lincolni*), ruby-crowned kinglet (*Regulus calendula*), and orange-crowned warbler (*Leiothlypis celata*).

A summary of the average number of collisions detected by month during the monitoring period is provided in Figure 1 below. The frequency of detected collision incidents varied throughout the year, with the highest average number of collisions occurring in September (12 per month) and October (18 per month) during the fall migration season. Lower numbers of collisions (3–5.5 per month) occurred during the winter and spring migration periods from November to April, with the lowest numbers of collisions (0–2 per month) occurring during the summer breeding season from May to August.

Figure 1. The average number of collisions detected by month throughout the monitoring period.

Of the 104 recorded incidents of collisions, 46 (44.2%) were detected on the ground (in the form of a carcass, partial carcass, or feather spot) and 58 (55.8%) were detected as imprints or feathers on glass (Table 2). As evident in Table 2, confirmation of fatalities was entirely dependent on the type of evidence present—fatalities were only confirmed when a carcass or partial carcass was detected. However, the majority of collision evidence consisted of feathers on glass, imprints on glass, and feather spots. Thus, although the monitoring effort was able document collisions with the building using several types of evidence, more than half of this evidence did not allow conclusive determination of whether birds survived the collisions.

Table 2. Summary of Collision Evidence by Type

Evidence Type	Confirmed Fatality	Potential Fatality	Total
Dead Bird – Carcass or Partial Carcass	35	0	35
Secondary Evidence – Feather Spot	0	11	11
Secondary Evidence – Imprint on Glass	0	5	5
Secondary Evidence – Feathers on Glass	0	53	53
Totals	35	69	104

Of the 104 incidents of collisions recorded during the monitoring, 58 included evidence on glass (53 observed instances of feathers on glass, 5 observed instances of imprints on glass). Because the 600 Clyde office building includes some areas that are treated with a bird-safe glazing treatment, when collision evidence was detected on glass we noted if the glass was treated with a bird-safe glazing treatment. Of the 53 collisions for which evidence was detected on glass, 52 occurred on untreated glass and 1 occurred on bird-safe glass (Figures 2–5).

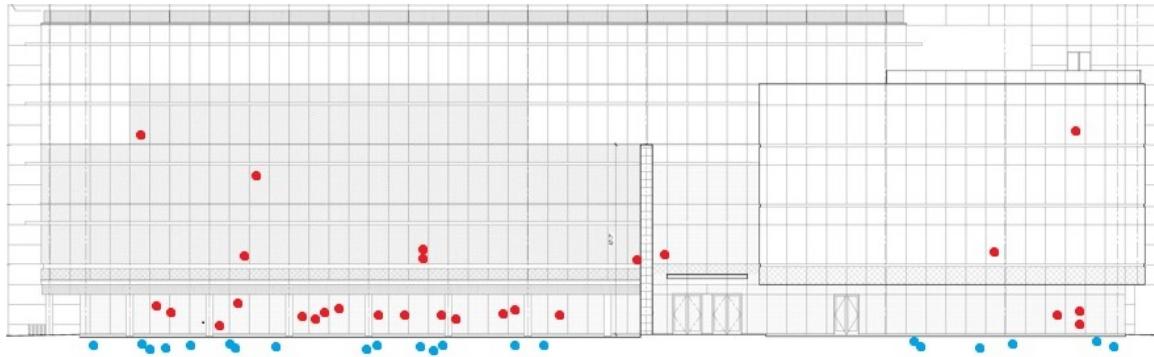


Figure 2. Evidence of 48 collisions was detected with the west façade, including 27 locations on glazing (indicated as red points) and 21 locations on the ground next to the façade (indicated as blue points).

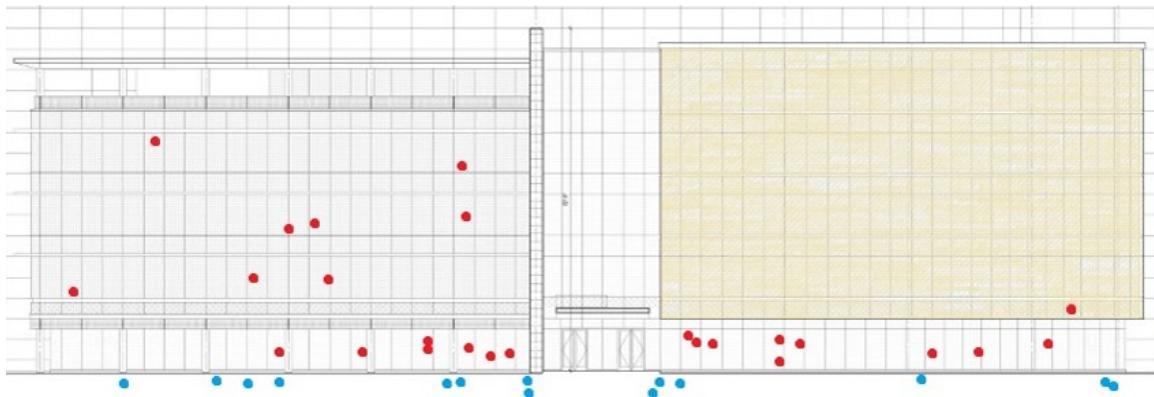
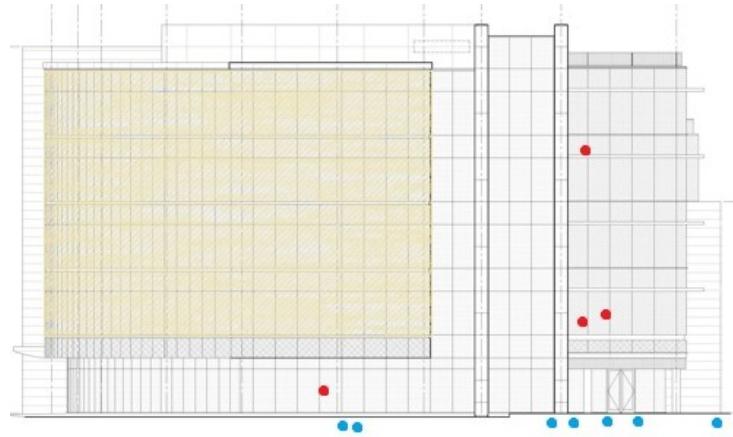
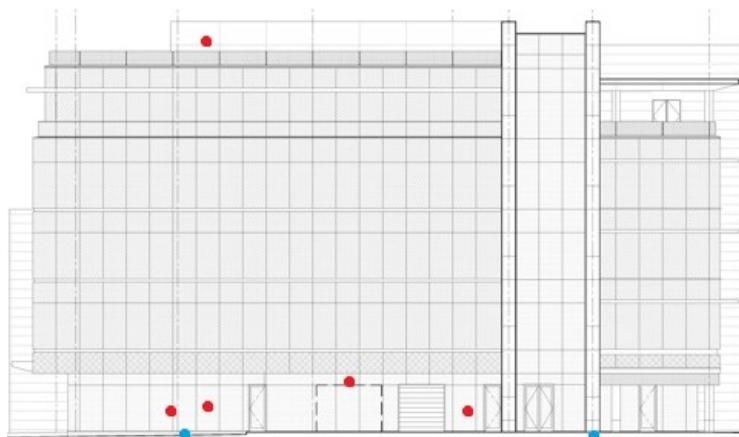




Figure 3. Evidence of 39 collisions was detected with the east façade, including 25 locations on glazing (indicated as red points) and 14 locations on the ground next to the façade (indicated as blue points). Bird-safe glass is indicated in yellow.

Figure 4. Evidence of 11 collisions was detected with the north façade, including four locations on glazing (indicated as red points) and seven locations on the ground next to the façade (indicated as blue points). Bird-safe glass is indicated in yellow.

Figure 5. Evidence of seven collisions was detected with the south façade, including five locations on glazing (indicated as red points) and two locations on the ground next to the façade (indicated as blue points).

3.2 Additional Site Visits

As discussed under *Methods* above, we conducted 16 additional monitoring visits, not required by the Plan, from September to November 2021. During these visits, we observed 13 incidents of collision evidence, all of which were imprints on glass that were subsequently recorded on the following “standard” visit. Thus, no new collision evidence was detected during the additional visits that would not have been detected during the standard visits.

Section 4. Assessment

Per the requirements of the Plan, monitoring will cease after 18 months unless the data demonstrate that (1) the collision rate with the 600 Clyde office building is demonstrably higher than that of a building in a similar setting, or (2) collisions with the 600 Clyde office building pose a conservation risk to any native bird species at the local level. The Plan also requires assessment of the need for any corrective actions (i.e., directly addressing problematic portions of the building via added/augmented design features) to ameliorate collision risk with the building.

These requirements are addressed in the sections below in the context of the monitoring results.

4.1 Collision Rate

We reviewed the monitoring data to determine if the observed collision rate with the 600 Clyde office building is demonstrably higher than that of another building in a similar setting. During the monitoring period, we detected evidence of 104 collisions with the 600 Clyde office building. Average collision rates by month are shown on Figure 1.

The rate of bird collisions with other buildings in similar settings is unknown. The City's requirement for projects to monitor avian collisions following construction is relatively recent, and avian collision rates from similarly rigorous monitoring studies of other buildings in similar settings (e.g., in Mountain View) are not available for comparison. If the City or others have such monitoring data available, we can review those data and update this assessment for compliance purposes.

However, in our opinion, additional monitoring of the 600 Clyde Avenue office building would not change the conclusions of this monitoring effort, as the October 2021 to April 2022 monitoring has effectively established the collision rate with the building. In our opinion, these data are sufficient to assess conservation risk to native bird species as well as the need for any corrective actions, and no additional monitoring is needed to comply with Plan requirements related to determining the collision rate with the building.

4.2 Conservation Risk

We reviewed the monitoring data to determine if collisions with the 600 Clyde office building pose a conservation risk to any native bird species at the local level. For the purpose of this assessment, we define the *local level* as the Moffett/Whisman planning area of Mountain View within which the project is located, as well as nearby areas of Sunnyvale including the adjacent Sunnyvale Municipal Golf Course.

4.2.1 Potential Fatalities

Collisions with buildings contribute to conservation risk for local bird populations when they result, either immediately or eventually, in mortality. If birds are able to fly away in a healthy state following a collision, the collision would not contribute to conservation risk. As discussed under Section 3.1 *Summary of Monitoring Data* above, we documented a total of 35 confirmed fatalities and 69 potential fatalities during the monitoring. Thus, for 69 of the documented collisions (65.7% of the data), it was unknown whether a fatality occurred (and whether the collision contributed to collision risk) or the bird was able to fly away in a healthy state and resume its normal activities.

Because potential fatalities represent a large percentage of the monitoring data, we looked for information in the literature regarding the outcomes of bird collisions to determine whether there is existing information to help us determine the proportion of collisions that result in fatalities. We found no useful information in this regard. The outcome of bird collisions with glass can vary widely. While some birds are killed instantly (resulting in a carcass that would later be detected or removed by a scavenger), other birds sustain injuries of varying degrees. Injured birds often fly off following the collision, but they may sustain injuries such as intracranial hemorrhaging that result in mortality at a later time, either directly due to the injury or due to resulting debilitations that prevent the bird from foraging effectively and/or increase its vulnerability to predators (Klem 1990). Because these birds fly away after they collide with the glass, monitoring efforts are not able to document the outcomes of these collisions with certainty.

In addition, there are many common scavengers present on the 600 Clyde project site, such as ants, rats, American crows (*Corvus brachyrhynchos*), and raccoons. All of these scavengers can remove a carcass within a period ranging from minutes to days. Due to the presence of these scavengers and the infrequency of the monitoring visits (i.e., weekly or twice monthly), many carcasses were likely removed from the search area before they could be detected.

For the purpose of this assessment, due to the uncertainty regarding the outcomes of potential fatalities as well as the presence of scavengers on the site, we conservatively assume that the majority of the 69 potential fatalities detected during the monitoring period likely resulted in fatalities.

4.2.2 Assessment of Population-Level Effects

Per the requirements of the Plan, we assessed the effects of collisions with the 600 Clyde Avenue office building on bird species at the local population level.

The landscape vegetation on the project site is relatively young, with small trees. Over the next 10–15 years, this vegetation will mature, providing both a greater extent of habitat resources for birds on the site as well as higher-quality habitat. Thus, for the purpose of assessing effects of bird collisions with the 600 Clyde office building on local populations, we conservatively assume that the number of birds that use the site will increase over time, and the number of collisions with the 600 Clyde Avenue office building is also likely to increase.

4.2.2.1 Resident Birds

Because resident birds are present within an area year-round, they are more familiar with their surroundings and can be less likely to collide with buildings compared with migrant birds (discussed below). However, the numbers of resident birds that collide with buildings can still be relatively high over time. Young birds that are more naïve regarding their surroundings are more likely to collide with glass compared to adult birds. In addition, although adult birds are often more familiar with their surroundings, they still collide with glass with some frequency, especially when they are startled (e.g., by a predator) and have limited time to assess their intended flight path to avoid glazed facades.

Of resident birds that were identified to species, we detected greater numbers of collisions and fatalities of Anna's hummingbirds compared to all other species (24–25 collision incidents, depending on the species of unidentified hummingbird) (Table 1). A number of factors may contribute to these observations. For instance, Anna's hummingbirds can occur in relatively high densities locally in the South Bay. In addition, hummingbirds are more vulnerable to collisions compared to many other bird species (Loss et al. 2014). Thus, hummingbirds may collide with the building in greater numbers compared to other bird species because they occur on the site in higher densities and are more vulnerable to collisions.

In our opinion, the loss of up to 25 Anna's hummingbirds over an 18-month period, even accounting for error and the expected maturity of the on-site vegetation over time, would not have a substantial effect on this species' regional population due to the high abundance of this species in the region. Thus, in our opinion, collision risk with the 600 Clyde office building does not pose a conservation risk to Anna's hummingbirds at the local level.

We detected four collisions of other resident birds that were identified to species (two house finches, one brown creeper¹, and one lesser goldfinch). Based on our stated assumption that the distribution of species within the group of unidentified birds is likely similar to the identified birds, we estimate that approximately 23.5% of unidentified birds (14.8 birds) were also residents, with no more than a few (likely less than 5) individuals of any one species composing this group. However, allowing for error, we acknowledge that actual numbers of resident birds that collided with the building may be somewhat higher or lower than these estimates. Resident birds that occur in the Mountain View area are all common species that are widespread in the region. Resident species in the local area that were not identified during the monitoring include the mourning dove (*Zenaida macroura*), black phoebe (*Sayornis nigricans*), American crow, chestnut-backed chickadee (*Poecile rufescens*), oak titmouse (*Baeolophus inornatus*), dark-eyed junco (*Junco hyemalis*), California towhee (*Melozzone crissalis*), Bewick's wren (*Thryomanes bewickii*), and American robin (*Turdus migratorius*). Resident raptors in the local area that include the red-tailed hawk (*Buteo jamaicensis*), Cooper's hawk (*Accipiter cooperii*), and red-shouldered hawk (*Buteo lineatus*).

¹ Because brown creepers can occur in the local area as both a resident and a migrant/wintering bird, and this individual was detected in July when it could have been either a breeder or a migrant, this species is included in both sections of this assessment.

The resident bird species detected during the monitoring, as well as the other resident species (including raptors) that occur in the local area and that may have been part of the group of unidentified birds, are abundant and widespread in the project region. The loss of a few individuals of non-hummingbird species over an 18-month period, even accounting for error and the expected maturity of on-site vegetation over time, would not have a substantial effect on these species' regional populations, in our opinion. Thus, in our opinion, collision risk with the 600 Clyde office building does not pose a population-level conservation risk to any native resident bird species at the local level.

4.2.2.2 Migrant Birds

Nocturnal migrant landbirds are expected to be attracted to the project vicinity, especially the Sunnyvale Municipal Golf Course to the east, during migration periods in the spring and fall. When these birds arrive in the site vicinity they are tired from flying all night, they are hungry, and they are less likely to be aware of risks such as glass compared to well-fed, local resident, summering, or wintering birds familiar with their surroundings. As these migrants descend from higher elevations, they will seek suitable resting and foraging resources in the new landscape vegetation adjacent to the buildings. During this reorientation process, migrants are susceptible to collisions with the buildings if they cannot detect the glass as a solid structure to be avoided. Migrant birds that use structures for roosting and foraging (such as swifts and swallows) will also be vulnerable to collisions if they perceive building interiors as potential habitat and attempt to enter the buildings through glass walls.

We detected 14 collisions of migrant/wintering birds that were identified to species (three yellow warblers; three pine siskins; one brown creeper, golden-crowned sparrow, hermit thrush, Lincoln's sparrow, ruby-crowned kinglet, orange-crowned warbler, and *Zonotrichia* sp.; and potentially one unidentified hummingbird, depending on the species). Based on our stated assumption that the distribution of species within the group of unidentified birds is likely similar to the identified birds, we estimate that approximately 82.3% of unidentified birds (51.8 birds) were also migrants, with no more than a few (likely less than 10) individuals of any one species. However, allowing for error, we acknowledge that actual numbers of migrant/wintering birds that collided with the building may be somewhat higher or lower than these estimates. Additional common migrant/wintering species that occur in the local area and were not identified during the monitoring are the yellow-rumped warbler, cedar waxwing, western bluebird (*Sialia mexicana*), American goldfinch (*Spinus tristis*), Townsend's warbler (*Setophaga townsendi*), and various species of swallows.

The yellow warbler, a California species of special concern when nesting, is an abundant migrant in the local area. Although small numbers of yellow warblers breed in riparian habitats in the South Bay, this is an abundant and widespread spring and fall migrant, and due to the absence of breeding habitat from the vicinity of the project site, any yellow warblers occurring there are migrants (and thus would not be considered California species of special concern). As stated above, there is no evidence that a high proportion of the unidentified birds were yellow warblers. However, assuming that yellow warblers represented a similar proportion of unidentified birds as identified birds, up to approximately 11.8 unidentified birds (18.8% of this group) may have been yellow warblers. Thus, the data suggest that up to 14.8 yellow warblers may have collided with the

building over an 18-month period. Allowing for error, we acknowledge that this may overestimate or underestimate (and likely overestimates) actual numbers of collisions by this species. However, the loss of up to 14.8 yellow warblers over an 18-month period, even accounting for error and the expected maturity of on-site vegetation over time, would not have a substantial effect on this species' regional population, in our opinion, due to the high abundance of this species as a migrant in the region. Thus, in our opinion, collision risk with the 600 Clyde office building does not pose a conservation risk to yellow warblers at the local level.

All of the migrant/wintering bird species detected during the monitoring, as well as the additional migrant/wintering species that are known to occur in the local area and may have been included in the group of unidentified birds, are abundant and widespread in the project region. The loss of a few individuals of these species over an 18-month period, even accounting for error and the expected maturity of on-site vegetation over time, would not have a substantial effect on these species' regional populations, in our opinion. Thus, in our opinion, collision risk with the 600 Clyde office building does not pose a conservation risk to any native migrant/wintering bird species at the local level.

4.3 Corrective Actions

In our opinion, the monitoring data indicate that the 600 Clyde office building does not pose a conservation risk to any native bird species at the local level. Thus, no corrective actions are necessary under the Plan.

Section 5. References

Cornell Lab of Ornithology. 2022. eBird. <http://www.ebird.org/>. Accessed through August 2022.

Hager, S. B., Cosentino, B. J., & McKay, K. J. 2012. Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. *Journal of Field Ornithology*, 83(2): 203-211.

Hager, S.B. and B.J. Cosentino. 2014. Surveying for bird carcasses resulting from window collisions: a standardized protocol. No. e406v1. *PeerJ PrePrints*.

Klem Jr, D., 1990. Bird Injuries, cause of death, and recuperation from collisions with windows. *Journal of Field Ornithology*, pp.115-119.

Ocampo-Peña, N., Winton, R. S., Wu, C. J., Zambello, E., Wittig, T. W., & Cagle, N. L. 2016. Patterns of bird-window collisions inform mitigation on a university campus. *PeerJ*, 4, e1652.

WRA. 2017. Bird Strike Monitoring Plan for 600 Clyde Avenue, Mountain View, California. July 27, 2017.

Appendix A. Avian Collision Monitoring Data

Surveyor	Date	Initials	ID	Species	Time	Distance to Building (ft)	Evidence Type	Confirmed Carcass?
	10/9/20	ML	20201008ML-03	Unidentified Bird	1229	3	D = Dead bird, I = injured bird, S = stunned bird, SE = secondary evidence (e.g., imprint, feathers, blood on glass)	
	10/9/20	ML	20201008ML-02	Yellow Warbler	1219	2	D - partial carcass, skull and feathers	Y
	10/9/20	ML	20201009ML-01	Unidentified Bird	1245		SE - feather spot	N
	10/9/20	ML	20201009ML-01	Unidentified Bird	1254		SE - feathers on glass	N
	10/9/20	ML	20201008ML-01	Unidentified Bird	1121		SE - feathers on glass	N
	10/15/20	ML	20201015ML-01	Anna's Hummingbird	1151	2	SE - imprint	N
	10/15/20	ML	20201015ML-04	Orange-Crowned Warbler	1218	5	D - carcass	Y
	10/15/20	ML	20201015ML-05	Hermit Thrush	1229	5	D - partial carcass, bones and feathers	Y
	10/15/20	ML	20201015ML-03	Anna's Hummingbird	1208		SE - feather spot, primaries and tail feathers	N
	10/15/20	ML	20201015ML-02	Unidentified Bird	1158		SE - feathers on glass	N
	10/22/20	ML	20201022ML-01	Passerine	1139	6	SE - feathers on glass	N
	10/22/20	ML	20201022ML-05	Anna's Hummingbird	1257	3	D - partial carcass, skull and feathers	Y
	10/22/20	ML	20201022ML-04	Lesser Goldfinch	1224	10	SE - feather spot	N
	10/22/20	ML	20201022ML-03	Yellow Warbler	1156	2	SE - feather spot, primaries and tail feathers	N
	10/22/20	ML	20201022ML-02	Unidentified Bird	1148		SE - feather spot, primaries and tail feathers	N
	10/29/20	ML	20201029ML-01	Zonotrichia	1124	20	SE - feathers on glass	N
	10/29/20	ML	20201029ML-02	Passerine	1241		SE - feather spot, primaries and tail feathers	N
	11/19/20	WL	20201119WL-01	Passerine	1120	1	SE - feathers on glass	N
	11/25/20	ML	20201125ML-01	Anna's Hummingbird	1124	1	D - partial carcass, skull and feathers	Y
	11/25/20	ML	20201125ML-02	Passerine	1139		SE - feather spot, body feathers and imprint	N
	12/10/20	ML	20201212ML-01	Anna's Hummingbird	1219	1	SE - feathers on glass	N
	12/10/20	ML	20201212ML-02	Passerine	1257		D - carcass	N
	12/24/20	ML	20201224ML-01	Anna's Hummingbird	1111	12	SE - feathers on glass	N
	12/24/20	ML	20201224ML-02	Ruby-Crowned Kinglet	1134	10	D - carcass	Y
	12/24/20	ML	20201224ML-03	Passerine	1159		D - carcass	N
	01/07/21	ML	20210107ML-03	Pine Siskin	1135	7	SE - feathers on glass	N
	01/07/21	ML	20210107ML-02	Pine Siskin	1128	1	D - feather spot	N
	01/07/21	ML	20210107ML-01	Passerine	1122		SE - feathers on glass	N
	01/07/21	ML	20210107ML-04	Passerine	1139		SE - feathers on glass	N
	01/07/21	ML	20210107ML-05	Passerine	1205		SE - feathers on glass	N
	01/07/21	ML	20210107ML-06	Passerine	1245		SE - feathers on glass	N
	2/4/2021	ML	20210204ML-04	Anna's Hummingbird	1244	3	D - carcass	Y
	2/4/2021	ML	20210204ML-01	Passerine	1141		SE - feathers on glass	N
	2/4/2021	ML	20210204ML-02	Passerine	1144		SE - feathers on glass	N
	2/4/2021	ML	20210204ML-03	Unidentified Bird	1212		SE - dust imprint	N
	2/18/2021	WL	20210218WL-02	Pine Siskin	1225	3	D - partial carcass	Y
	2/18/2021	WL	20210218WL-01	Passerine	1135		SE - feathers on glass	N
	3/4/2021	WL	20210304WL-01	Anna's Hummingbird	1125	3	D - carcass	Y
	3/4/2021	WL	20210304WL-02	Anna's Hummingbird	1134	4	D - carcass	Y
	3/4/2021	WL	20210304WL-03	Anna's Hummingbird	1140	2	D - carcass	Y
	3/4/2021	WL	20210304WL-04	Anna's Hummingbird	1141	5	D - carcass	Y
	3/18/2021	JJ	20210318JJ -01	Golden-Crowned Sparrow	1137	1	D - carcass	Y
	4/1/2021	JJ	20210401JJ -01	Anna's Hummingbird	1132	5	D - carcass	Y
	4/1/2021	JJ	20210401JJ -02	Anna's Hummingbird	1156	2	D - carcass	Y
	4/1/2021	JJ	20210401JJ -03	Anna's Hummingbird	1206	4	D - carcass	Y
	4/1/2021	JJ	20210401JJ -04	Anna's Hummingbird	1220	1	D - carcass	Y
	4/8/2021	JJ	20210408JJ -01	Anna's Hummingbird	1118	3	D - carcass	Y
	4/8/2021	JJ	20210408JJ -02	Passerine	1158		SE - feathers on glass	N
	4/15/2021	WL	20210415WL-01	Anna's Hummingbird	1126	5	SE - feathers on glass	N
	4/22/2021	WL	20210422WL-01	Unidentified Bird	1150		D - carcass	N
	4/29/2021	WL	20210429WL-02	Anna's Hummingbird	1119	3	SE - dust imprint	Y
	4/29/2021	WL	20210429WL-01	Passerine	1142	2	D - carcass	Y
	7/1/2021	WL	20210701WL-01	Brown Creeper	1130	1	D - partial carcass	Y
	7/1/2021	WL	20210701WL-02	Hummingbird Sp.	1136	4	D - carcass	Y
	8/5/2021	WL	20210805WL-01	Anna's Hummingbird	1105	4	D - partial carcass	Y
	8/5/2021	WL	20210805WL-02	Yellow Warbler	1215	5	D - partial carcass	Y
	9/2/2021	WL	20210902WL-01	House Finch	1137	0	D - partial carcass	Y
	9/9/2021	JJ	20210909JJ-01	Passerine	1152		SE - feathers on glass	N
	9/9/2021	JJ	20210909JJ-02	Passerine	1226		SE - feathers on glass	N
	9/9/2021	JJ	20210909JJ-03	Passerine	1232		SE - feathers on glass	N
	9/9/2021	JJ	20210909JJ-04	Passerine	1236		SE - feathers on glass	N
	9/9/2021	JJ	20210909JJ-05	Passerine	1243		SE - feathers on glass	N
	9/16/2021	JJ	20210916JJ-01	Passerine	1130		SE - dust imprint	N
	9/16/2021	JJ	20210916JJ-02	Passerine	1130		SE - dust imprint	N
	9/23/2021	JJ	20210923JJ-01	Anna's Hummingbird	1212		SE - feathers on glass	N
	9/30/2021	JJ	20210930JJ-02	Passerine	1133	1	SE - feathers on glass	Y
	9/30/2021	JJ	20210930JJ-02	Passerine	1152		SE - feathers on glass	N
	9/30/2021	JJ	20210930JJ-03	Passerine	1206		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-01	Passerine	1115		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-02	Passerine	1120		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-03	Passerine	1124		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-04	Passerine	1124		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-05	Passerine	1137		SE - feather on glass	N
	10/7/2021	JJ	20211007JJ-06	Passerine	1141		SE - feather on glass	N

10/7/2021	JJ	20211007JJ-07	Passerine	1152		SE - feather on glass	N
10/14/2021	WL	20211014WL-01	Anna's Hummingbird	1138	4	D - partial carcass	Y
10/14/2021	WL	20211014WL-02	Passerine	1157	6	SE - feather spot	N
10/14/2021	WL	20211014WL-03	Passerine	1155		SE - feathers on glass	N
10/21/2021	WL	20211021WL-03	House Finch	1254	7	SE - feather spot	N
10/21/2021	WL	20211021WL-01	Passerine	1240		SE - feathers on glass	N
10/21/2021	WL	20211021WL-02	Passerine	1246		SE - feathers on glass	N
10/21/2021	WL	20211021WL-04	Passerine	1252		SE - feathers on glass	N
10/21/2021	WL	20211021WL-05	Passerine	1249		SE - feathers on glass	N
10/28/2021	WL	20211028WL-01	Passerine	1129		SE - feathers on glass	N
10/28/2021	WL	20211028WL-02	Passerine	1133		SE - feathers on glass	N
10/28/2021	WL	20211028WL-03	Passerine	1140		SE - feathers on glass	N
10/28/2021	WL	20211028WL-04	Passerine	1141		SE - feathers on glass	N
11/4/2021	WL	20211104WL-02	Passerine	1126	4	SE - feather spot	N
11/4/2021	WL	20211104WL-01	Passerine	1123		SE - feathers on glass	N
11/4/2021	WL	20211104WL-03	Passerine	1130		SE - feathers on glass	N
11/4/2021	WL	20211104WL-04	Passerine	1138		SE - feathers on glass	N
11/11/2021	WL	20211111WL-01	Passerine	1143		SE - feathers on glass	N
11/11/2021	WL	20211111WL-02	Passerine	1145		SE - feathers on glass	N
12/9/2021	WL	20211209WL-01	Passerine	1159		SE - feathers on glass	N
1/6/2022	WL	20220106WL-01	Anna's Hummingbird	1113	3	D - carcass	Y
1/20/2022	WL	20220120WL-01	Passerine	1139		SE - feathers on glass	N
2/3/2022	JJ	20220203JJ-01	Passerine	1133		SE - feathers on glass	N
2/3/2022	JJ	20220203JJ-02	Passerine	1140		SE - feathers on glass	N
2/3/2022	JJ	20220203JJ-03	Passerine	1215		SE - feathers on glass	N
2/17/2022	WL	20220217WL-01	Passerine	1208		SE - feathers on glass	N
2/17/2022	WL	20220217WL-02	Passerine	1230		SE - feathers on glass	N
3/3/2022	WL	20220303WL-01	Anna's Hummingbird	1132	8	D - carcass	Y
3/17/2022	WL	20220317WL-01	Anna's Hummingbird	1237	5	D - carcass	Y
4/14/2022	JJ	20220414JJ-01	Lincoln's Sparrow	1138	1.5	D - carcass	Y

From: [Alex Lew](#)
To: [Architectural Review Board](#)
Subject: Height regarding NVCAP 4/18/24 meeting item 3
Date: Tuesday, May 7, 2024 3:09:52 PM

CAUTION: This email originated from outside of the organization. Be cautious of opening attachments and clicking on links.

To ARB:

I was not able to attend the hearing, but I just watched the video. Thank you for your review. I have some comments regarding your recommendation of increasing the proposed height to 65'.

Housing architects and planners are trying to increase the density and affordable housing within the constraints of the building code, life safety code, and high construction costs.

High rise life safety is required when the top floor is +75' above the lowest floor. Affordable housing developers try to avoid these additional costs for evacuation, fire suppression, and traction elevators. Mid rises are less expensive than high rises. The 75' is measured to the floor of the top story (and not the roof-ceiling). So, say it's an 85' high building measured to the roof or 89' to the parapet.

The State density bonus allows a maximum density bonus of 3 additional stories or 33' additional height for 100% affordable projects. Alternatively, other smaller bonuses are also allowed.

Working backwards 89' - 33' bonus = 56' base height limit. The 56' height limit allows 1 ground floor retail level and 4 residential floors. The retail floor may not be financially viable. In these cases, the height limit can be reduced to 50'. The concrete transfer slab "the podium" is relatively expensive. These heights are standard for cities comparable to Palo Alto.

It doesn't make sense to give away extra height without trying to get some affordable housing.

For reference, The Dean at 400 San Antonio in Mountain View is 90' high (5-7 stories) at 2.5 FAR. The project seems to exceed Palo Alto's objective standards. Floors 2-5 are setback 21' from the property line. Floors 6+7 are stepped back 29'. I think the problem with this building is its 11' floor to floor height.

NVCAP is allowing 3.0 FAR. 20% more floor area.

Alex Lew