Russtarge small con

CITY OF PALO ALTO

Office of the City Clerk

CITY OF PALO ALTO. CA CITY CLERK'S OFFICE

APPEAL FROM THE DECISION OF DIRECTOR OF PLANNING AND COMMUNITY ENVIRONMENT*

18 APR -9 PM 4:01

For appeals of final decisions on Architectural Review Board and Home Improvement Exception applications (rendered after public hearing), this appeal form shall be completed and submitted by appellant within fourteen days from date of the Director's decision. Appeals of final decisions on Individual Review applications (rendered after public hearing) must be submitted within ten days of the Director's decision. Complete form, the current fee and a letter stating reasons for the appeal shall be submitted to front desk staff of the Planning Division, 5th floor, City Hall, 250 Hamilton Avenue, except for 980 Fridays when City Hall is closed, when these items shall be submitted to Planning staff at the Development Center, 285 Hamilton Avenue (glass storefront across

from City Hall on the corner of Bryant and Hamilton).

* Director of Planning includes his designees, which are Pla	anning Managers or the Chief	Planning Official	
Appeal Application No. B-AP-T Name of Appellant Russell a Patricia Tar	Receipt N	lo. 20180	99001-64
Address 1010 Harriet Street	Palo /	416 CA	9430
Street		City	ZIP
LOCATION OF PROPERTY SUBJECT TO APPEAL:			
Street Address All Approvals of use	of utily poles	Fer 46-5	6-Telecoin
Name of Property Owner (if other than appellant)	usel U patri	ic Tors.	
Property Owner's Address 1010 Harvet Street	troet Pala	Altu City	94301 ZIP
The decision of the Director of Planning and Community E All Aprovals of use by whereby the application (file number) was (approved/denied), Date: Signature of Appellant	\mathcal{N} \mathcal{N}	tter (in duplicate)	_, 20
PLANNING COMMISSION RECOMMENDATION TO THE C	CITY COUNCIL (TO BE FILLE	D OUT BY STAFE)	
Date Approved		Denied	¥.
Remarks and/or Conditions:			*
CITY COUNCIL DECISION (TO BE FILLED OUT BY STAF	F):		
Date Approved		Denied	-
Remarks and/or Conditions:			
SUBMITTAL REQUIREMENTS SATISFIED:			Received
 Letter stating reasons for appeal Fee (currently \$280.00) 	Received by: TRMY Received by: TRMY	+ MORA	APR 0 9 2018

Appeal and Claim of Russell Targ and Patricia Targ in opposition to the proposed placement of 4G and 5G close proximity radiation emitting devices on utility poles within the City of Palo Alto.

Background statement of Russell Targ

I am a Silicon Valley engineer and physist. I have lived in Palo Alto for approximately 50 years and have lived in our current home on Harriet Street for the last 45 years. My earlier background is as a laser physicist, my work at SRI with Hal Putoff on governmental projects has been the subject of several books and articles.

Faced with this brand-new (to me) data, I find it ironic that I have been a student of the effects of electromagnetic radiation at different times for more than 60 years. My first such engagement was in physics at The Sperry Gyroscope company in Great Neck New York, where my scientific investigations of a nearby non-ionizing radiation source led to the installation of a Faraday wall screen to protect our laboratory area from a nearby source of such radiation.

I must now submit this Appeal and Claim on the basis of fragmentary information, because my wife Patricia and I never received any Notice of the impending installation of what the San Jose Mercury News reports will be 92 additional new cell towers within our city limits on previously publically owned utility poles. This entire event series would have transpired without our even knowing about these impending health risks had it not been that a friend mentioned this to me by telephone last Saturday.

I am satisfied from study that the microwave broadcast from these socalled Small Cell towers present risks to the human biological system. I Object to the continuation of any installation of these cell towers on our residential and commercial streets as set forth under the Claims section below.

Background statement of Patricia Targ

My name is Patricia Targ. I am an artist. I have lived in the Bay Area for twenty-five years, and taught elementary school in San Jose for fifteen of those years. I am a resident of the City of Palo Alto. I am married to Russell Targ and live with him in our home on Harriet Street in Palo Alto. I have lived in Palo

Alto for fifteen years. I only learned about the proposed installation of these utility pole towers yesterday, and with any detail today, I am told the last day to file, and like my husband have no choice other than to proceed on my currently limited data. However, from my recent examination of materials in this area I believe that the concentrations of radiation from the proposed installation of these towers on utility poles presents health risks to residents to Palo Alto and visitors to our City, and I Object to the continuation of this process on the grounds stated in the Claims section.

Nature of Objections and Claims

Each and both Russell Targ and Patricia Targ, only within days aware of the action of their City, Object and Claim against any use of utility poles which are public property owned or cooperatively endeavored by or with the City of Palo Alto for the installation of cellular towers.

Each and both Russell Targ and Patricia Targ, only within days aware of the action of their City, Object and Claim, and Appeal against each and every action or proposed action, by contract, ordinance, policy, or otherwise, under which the City of Palo Alto allows the use of public sidewalks for the installation of power supplies for these microwave generating 4G and/or 5G radiation distribution towers. In every instance where there is attempted or actual legal enablement of the installation of such microwave generating communication devices on public utility poles or publicly owned easements or rights of way, such installations on poles or sidewalks result, by Joint Venture, Agency, Landlord Tenant, and direct action, governmental actions and thus State Actions.

Appeal and Claims

1. NOTICE: I, and each of us, and together as a married couple, Appeal and Claim against any use of utility poles which are public property owned or cooperatively endeavored by or with the City of Palo Alto for the installation of cellular towers on the basis that we did not receive any proper Notice of such intention of the City or Verizon, and that we and each of us have thereby been deprived of Due Process, to our disadvantage, including the losses and damages stated herein.

- 2. DANGEROUS CONDITION OF PUBLIC PROPERTY AS TO UTILITY POLE MOUNTED TELECOMMUNICATIONS MICROWAVE ANTENAS: I and each of us, and together as a married couple, Appeal and Claim against any use of publically owned utility poles within the City of Palo Alto for close proximity radiation generating devices, including as described as Smart Cell Towers in discussions between the City and Telecom, including but not limited to Verizon, on the basis that upon the installation of such devices upon said publicly owned utility poles, including and not limited to because of the Doctrine of Fixtures, the melded resultant hybrid structures, meaning the City utility poles coupled with the healthendangering microwave broadcast towers, become dangerous public property, including within the meaning of Government Code 835 and other law, and we seek and request that such attachment of such radiation generators to said publicly owned utility poles not be allowed to proceed. We Object and Claim against any such installation of such health endangering radiation broadcast systems on any of said utility poles and Appeal from each, any, and every prior act of our City Counsel which has given indications of permission, by ordinance, contract, or otherwise, for the installation of such towers on such public property.
- 3. DANGEROUS CONDITION OF PUBLIC PROPERTY AS TO SIDEWALK POWER SUPPLIES FOR UTILITY POLE MOUNTED TELECOMMUNICATIONS MICROWAVE ANTENAS: I and each of us, and together as a married couple, Appeal and Claim against any use of publically owned sidewalk or roadway easements within the City of Palo Alto for the installation of power supplies for close proximity radiation generating devices, including as described as Smart Cell Towers in discussions between the City and Telecom, including but not limited to Verizon, on the basis that upon the installation of such devices upon said pubslic sidewalk and roadway easements, including and not limited to because of the Doctrine of Fixtures, the melded resultant hybrid structures, meaning the City utility poles coupled with the health-endangering microwave broadcast towers, as powered by such power supplies, become dangerous public property, including within the meaning of Government Code 835 and other law, and we seek and request that such placement

of such power supplies for such radiation generators on said publicly owned utility poles not be allowed to proceed. We Object and Claim against any such installation of such power supplies for said health endangering radiation broadcast systems on any of said City roadway or sidewalk easements and Appeal from each, any, and every prior act of our City Counsel which has previously given indications of permission, by ordinance, contract, or otherwise, for the installation of such power supplies on towers on such public property. With regard to the Dangerous Condition of Public Property inherent in such power supplies, it is noted that all reserve power provisions, whether by lithium batteries or by petroleum or propane powered generators, present a risk of explosion and fire and that said installation of said power supplies on such rights of way are objected to by this Appeal, Claim, and Objection as herein set forth.

- 4. DUE PROCESS OBJECTION TO SIDEWALK AND ROADAY POWER SUPPLIES: We, Russell and Patricia individually, and as a married couple, did not receive any Notice of the proposed installation of these structures on public rights of way, and therefore Object, and Claim, and Appeal against any such power supply installation on public rights of way due to the absence of proper notice to us, who, like all residents of Palo Alto are affected by these proposed installations.
- 5. FISCAL OBJECTIONS TO THE INSTALLATION OF CLOSE PROXIMITY RADIATION GENERATING DEVICES AND THE POWER SUPPLIES THEREFORE, ON PUBLIC UTILITY POLES AND RIGHTS OF WAY.

 The effect of this installation of Dangerous Conditions of Public Property will have the effect of transferring liability from Telecom to the Taxpayer, and as Taxpayers, not only for direct damage or injury to persons and animals, but in that the effect of such installation will subject such governmental entities to potential liability for all cellular radiation injury based claims, including those asserted by persons claiming to have been injured, such as by brain cancer, from their use of

their personal cellular devices. I and we Object, Claim, and Appeal that the City should immediately and forthwith renounce any such contractual involvement with Verizon or other carriers, to avoid having the City with other governmental entities becoming liable to persons injured and or damaged by such radiation coming from such joint venture operated radiation broadcast mechanisms on such public rights of way and utility poles.

6. OBJECTION BASED UPON NON-DISCLOSURE OF MATERIAL FACTS. The work of Dr. Henry Lai, showing DNA strand fracture from cellular radiation is but one example of the well-established health risks from cellular signal not fully disclosed by any Telecom carrier or entity to the City of Palo Alto. There are many other scientific proofs of damage to the human biological system from such non-ionizing radiation, such as from Dr. Martha Herbert of The Harvard University School of Medicine, including but not limited to as set forth in her letter of February 2013 to the Los Angeles Unified School District, and other letters, from Dr. Herbert and other medical entities, as can be seen, for one of many examples, at the webpage of epidemiologist Dr. Devra Davis at www.ehtrust.org, and many other sites, including www.greenswan.org. and including articles in late March of this year which appeared in Scientific American, Wired, and especially The Nation, all as published on March 29th in such publications on the linkage between microwave signal and cancer formation. It is specifically alleged that each and all of the carriers involved, including Verizon, and including CTIA, are aware of these well-documented health risks, including but not limited to from their reading of the July 19, 2017 letter from attorney Harry V. Lehmann to the Assembly Appropriations Committee in California, in opposition CA SB 649, which letter opposing SB 649, amongst others, and which letter I have received and examined, is known to persons in Sacramento and national advocacy for CTIA and multiple cellular carriers. Despite knowledge of such documented health risks, such risks were not disclosed to the City of Palo Alto, and on that basis the City should be morally and legally released from any contractual obligation resulting

from such non-disclosure of such material facts, and for such repudiation with just cause we hereby Appeal and Claim.

- 7. OBJECTION AND APPEAL AND CLAIM BASED ON UNLAWFUL TAKING: Appeal, Claim, and Objection is hereby stated against any installation of any use of public easement over private property, including sidewalk easements, for microwave broadcast or related power supply purposes, on the ground that no utility easement, granted to any entity or the City allows for such physical encroachment by such sidewalk power supplies, and same are a Trespass, and an Unlawful Taking of Property, in violation of Due Process due to its absence.
- 8. CLAIM FOR LOSS OF PROPERTY VALUE: It is asserted and thereupon Appealed, Claimed, and Objected that the value of real property in Palo Alto is and will be diminished by the close proximity of such radiation generating devices.
- 9. NOTICE OF ADA VIOLATIONS: The proposed installations as above discussed will immediately injury those people in our community who are electromagnetically sensitive. The City faces great liability on that basis, and we and individually Object, Claim, and Appeal against allowance of said here-described radiation generators is stated upon the basis of the ADA liability of the City, and the ADA liability which may be imposed on us and others as homeowners from said installations.

WHEREFORE, we claim, as a married couple and individually, as set forth above, and Appeal for reversal of any allowance from the City of Palo Alto of the use of its utility poles, or the use of utility poles that collaboratively uses with other entities, for the installation of telecommunication radiation broadcasting devices, including but not limited to the so-called Small Cell installations. I, Russell Targ, sign here below on behalf of myself individually, for my wife and myself as a married couple, and for Patricia at her direction.

Penall Ian 4/9/18 1010 Horres Stab auch

City of Palo Alto Revenue Collections

Received From:	- Air		pate: 4/9/18
In Payment Of	el.		By:
ITEM			
() Certified Mail Fee	40050009	18990	\$
() False Alarm Late Fee	70020002	13110	\$
() Miscellaneous Revenue	10200000	18990	\$
() Transient Occupancy Tax	10200000	11850	\$
() Sales Tax		60050	\$
() Utility User Tax	10300000	11870	\$
() ZoneMapSales	60020201	17030	\$
() Univ Ave Parking		14510	\$
() Calif Ave Parking	23700000	14520	\$
() Lot S Parking	23600000	14500	\$
() Other DALL	030407	13396	\$
		Total	\$ 380 -
Copies to:			Cash () Check (/)

Submitted as rushi comment or in support of Tary Aprel of April 9, 2018

Law Offices of Harry V. Lehmann PC

Harry Vere Lehmann, Principal Attorney

4 Vineyard Court P. O. Box 1846 Novato, California 94948-1846 Area Code 415
Telephone: 897-2121
Facsimile: 898-6959

Via facsimile of even date and Federal Express.

Ms. Jennifer Galehouse, Deputy Chief Consultant Assembly Appropriations Committee State Capitol, Room 2114 Sacramento, CA 95814 Via 10 page fax: 916-319-2181 July 19, 2017

LAW OFFICES OF HARRY V. LEHMANN, P.C.

HARRY V. LEHMANN ATTORNEY AT LAW

P.O. Box 1846 Novato, CA 94948

Tel: 415.897.2121 Fax: 415.898.6959

Re:

- 1. Incorrect data given in Telecom testimony regarding Liability: The State faces liability exposure from SB 649
- 2. Whether exquisitely planned for this inevitable result, or 'just lucky' for Telecom, SB 649 once deployed will have the effect of shifting massive Industry liability to the State of California.

Dear Ms. Galehouse -

& Federal Express overnight

The liability-shift component of the SB 649 issue set has not been previously addressed. I didn't see the underlying liability-shift until after the testimony last Wednesday. The liability-shift consequence of SB 649 is a difficult point to see, but essential to be recognized. This letter is divided into two sections, the *GENERAL OVERVIEW* which appears next below presents the gist in three pages, and then a larger section titled *IN GREATER DETAIL*. Because the liability shifting aspect of this analysis was not seen by the undersigned until after the close of testimony on July 12th, and because the Appropriations Committee hearing on SB 649 is only a week away, and because this analysis implies possible billions in losses to the State, *an Appropriations issue*, this is an initial overview of the situation in the expectation that seasoned and competent unbiased legal analysis will be made of the most startling of the two issues here addressed, before passage of this Bill: In-depth legal analysis is encouraged.

GENERAL OVERVIEW

This letter reaches the conclusions stated through several vectors of analysis but bottom line this boils down to two core points: 1. During the hearings on SB 649, assurances were given by industry that the telecom companies would be the only entities affected by liability from radiation injuries. That is not true. Rather and instead, through SB 649 California faces potential liability for any injuries claimed to have resulted from the allegedly 'small cell,' antennas delivered to our residents from SB 649. 2. More profound in implication if true, and difficult to see, there is a heretofore non-disclosed sequella from SB 649; the potential transfer all financial liability for cellular injury cases from the telecom corporations to the State.

The State of California faces liability for damages sustained from Senate Bill 649

Typically any very serious or catastrophic injury case will be handled by experienced counsel - I believe any experienced lawyer who has been long engaged in plaintiffs work with governmental entities would agree with the following points, not one involves rocket science:

- 1)The defendants in a lawsuit do not get to choose whether to be sued. That choice is made by plaintiffs' counsel. There is no way for any industry representative to honestly claim that the State will not be sued for such injuries.
- 2) Once the involved cellular antenna box is attached to the involved governmental utility pole, for several reasons including the Doctrine of Fixtures as often used in tenancy situations, a melding takes place, and plaintiffs counsel will allege, as is consistent with the law, that the melded unit as a whole is Public Property.
- 3) Though plaintiffs can't sue the State for negligence or other Common Law causes of action, under our Government Code suit can be brought for Dangerous Condition of Public Property.
- 4) These *public* utility poles are demonstrably 'Dangerous' within the meaning of Government Code 835, because the radiation they emit has been scientifically proven to be carcinogenic, and the radiation is damaging to the human biological system. This is most dramatically proven by the \$25 million NIH study released on May 27, 2016, showing that cellular radiation causes the malignant cancer cell glioma, which is what causes the deadly brain cancer: glioblastoma.
- 5) The State of California, as a result of the Firefighters's Exemption, or Firehouse Exemption as it is alternatively called, is, a unique development, admitting the dangerous nature of the about-to-be-built 'small cell,' system, because, as a matter of provable Legislative Intent, the firehouses were exempted due to health concerns. So our Legislature is poised to create at least 30,000 different pieces of Public Property while in one fell swoop also branding each one as Dangerous. Other examples supportive of this point will appear below, in the discussion of the liability-shifting aspects of SB 649.

Senate Bill 649 can shift liability exposure from the telecom industry to the State of California.

The most important purpose of this letter is to alert Assemblymembers of previously undisclosed economic consequences which to the undersigned appear legally very likely to ensue from the passage of SB 649. State lawyers with extensive trial experience should evaluate what is said here and advise Appropriations and the Assembly whether the warnings here represent real issues. The consequence of greatest concern is that passage of SB 649, contrary to appearances, will result in the mass transfer of

liability for cellular microwave injury from the telecom industry to State government, with \$Billions involved. Whether this here-disclosed consequence is the result of a brilliant and intricate multiple-stage legal stratagem by the best lawyers that Telecom could retain, or whether the industry just got lucky, the result for the State of California will be the same, financial ruin. Consider the following factors:

- 1. The State can't be sued for 'negligence' or other basic common-law theories of relief, and Claimants can only sue as allowed in the Government Code.
- 2. The main CA Government Code section which is virtually always pled by all experienced public entity lawyers is Dangerous Condition of Public Property, Government Code 835.
- 3. If the 'taking,' of county and city properties in SB 649 is allowed, then what next follows when the cell tower is affixed to the publicly-owned utility pole, due to the 'fixtures,' doctrine and other legal reasons, is the merger of antenna and pole into Public Property. This is a complex issue with other criteria supporting the same Public Property finding.
- 4. Through the 'Firefighters Exemption' to SB 649, prohibiting cellular antenna construction near where firefighters sleep, based on health grounds as pushed by their unions, the State is acknowledging that its new melded-exposure property is Dangerous.
- 5. As a result of the above the enabling legislation makes the resulting Public Property Dangerous in character in the light of Government Code 835, which in turn makes lawsuits against the State much easier.
- 6. There is now overwhelming evidence of DNA and cellular damage from radio-frequency EMF as emitted by cellular phones and towers. If you have doubt about this, set up a debate between me and the best they've got. See prior letters, notably of May 23rd to Senate Appropriations, with integrated sworn Declaration of McGavin.
- 7. It is a matter of well-established public record that the international re-insurance industry has long refused to insure any aspect of the telecom industry for injuries caused by cellular devices or installations. There is no net.
- 8. The only avenue left to the cellular industry, other than just honestly facing up to this mess and helping us solve it, is to shift the legal responsibility to government.
- 9. Though good challenge may be on the horizon, the current stance of federal law under the Telecommunications Reform Act of 1996 it is not possible to prevail against a cellular company for liability for a phone made in roughly the last two decades.

- 10. Seasoned and competent counsel, where injuries occur of a sort consistent with EMF injury to DNA, including glioblastoma as indicated by glioma from the NIH study, will file suit against responsible corporate entities, broadly, and also sue the State of California. Right now many serious lawyers avoid this area due to the 1996 Telecommunications Reform Act. However the practical immunity offered to telecom under the act is conditional upon compliance with FCC standards, and there are now material means available to show that none of the currently marketed smart phones meet FCC standards when measured as actually used in the field, namely up against the face.
- 11. In the instance of the successful bar to civil prosecution which is currently provided by said industry-inspired 1996 Act, and in a State where 'joint and several liability' means that a 5% liability contributor has 100% of financial responsibility from a loss, the result of the combination of the factors stated above is that in the instance of suit, including 'friendly,' all financial burdens from cellular injury are shifted to the State of California, under the results from SB 649 as here-projected, through exercise of the federal regulatory bar to such prosecution of cases against the telecom industry.

I assert no position as to whether the stream of results capsulized above will arise from the prior formation of an intricate plan from very smart lawyers, or whether the industry just 'got lucky,' in regard to the seemingly inevitable consequences of signing SB 649 into law. It doesn't matter, but when you look five or six moguls down this hill, the financial crash is inevitable. The above introductory language has provided the essential elements. A more detailed section below will provide related details.

IN GREATER DETAIL

Below is described in numerical sub-sections is the financial burden-shifting hidden in SB-649, which exists regardless of whether that liability-shifting aspect is inherent in the Bill from actual intention or lucky accident: The effect of S-649 being signed into law and then the antennas deployed thereunder, will shift liability for massive numbers of cellular device injuries from industry to Government.

- 1. Under SB 649 and as a result of the corporate 'taking' of municipal, county, and State property, in the form of forced corporate seizure of previously publicly owned utility poles, the cellular antenna placed thereupon by such installation, including in real estate law, become an integrated 'fixture,' of said public property, in several ways legally indivisible therefrom. Other examples to the point of shared conduct imbuing with Public character arise from joint venture, etc. Once industry puts these antennas up on public poles, all risks and injuries from such antennas will be from a Dangerous Condition of Public Property, as defined in Government Code 835. The resulting Jury Instructions can be seen at CACI 1100.
- 2. In California law, state, regional and local governments cannot be sued for 'negligence.' Rather, the basis for which a suit may go forward against the State or an element thereof will, and must, be grounded in a statutorily prescribed Cause of

Action. Most commonly in these governmental tort situations, seasoned counsel will file, first, a Governmental Tort Claim alleging **Dangerous Condition of Public Property**, and thereafter, post-denial of the claim, the central plead liability theory of most such cases is just that, **Dangerous Condition of Public Property**, as provided for in Government Code 835.

- 3. It is established by clear and convincing evidence that cellular microwave broadcasts have adverse health consequences. The recent positive demonstration of the causation of malignant glioma (thus glioblastoma) cells from cellular energy in perfectly Faraday protected environments from our National Institutes of Health was only the most recent of similar and earlier findings. Much of these data and citations thereto have been provided to all Senators and Assemblymembers, including from my own letters. There can be arguments about varying danger of differing exposure routines, but the fact that the danger exists is overwhelmingly demonstrated, including by exposure standards for technicians engaged in cellular tower work. The epidemiological proof of non-thermal effect on the human biological system is now beyond reasonable dispute, as shown for just one example in the work of DeKun Li, the senior epidemiologist from Kaiser, Oakland, showing statistically significant increases in asthma and obesity in children of mothers who experienced higher level of EMF exposure during pregnancy. The data are readily accessible to all legislators. With the Firefigthers Exemption, the Bill itself is stating that the installation of small cell antennas on poles is "Dangerous," else no reason fo the Exemption.
- 4. It is well established in publicly available records and news reports that the reinsurance industry has refused, for decades, to insure or even defend manufacturers or carriers or others in telecom against lawsuits on behalf of persons claiming to have been injured by cellular radiation exposure. Therefore, the Telecom industry, now the largest dollar industry in the world, is on the high wire without a net. The industry likely has no insurance for injuries from cellular radiation, and it is not the proper job of the People of the great State of California to insure industry for that exposure.
- 5. In this situation, lawyers for the industry have almost certainly been tasked with examining ways through which the burden of this possible cellular injury exposure could be deflected onto other entities. These people are too smart not to have seen this far down the road.
- 6. Recent news reports have speculated that SB 649 may result in as many as 50,000 new cellular towers in California; in his recent correspondence Dr. Joel Moskowitz has indicated a range of between 30,000 and 50,000: The total may not reach 50K in the near term, as there are no provisions in SB 649 to truly extend past the Divide in rural areas. If for illustration we assume the lower number, it becomes a simple math problem: LEGISLATIVELY CONFESSED DANGER x 30,000 PUBLIC POLES = 30,000 SEPARATE INSTANCES OF DANGEROUS PIECES OF PUBLIC PROPERTY.

We have all heard allegations of people jumping on municipal transit buses immediately post crash, seeking to participate in recoveries. I think that is actually very uncommon, but recognition of tort opportunity will be easier here as these are stationary Dangerous Public Properties, which conveniently bring the carcinogenic radiation right into your living room, especially if you live in a crowded building, which with 5G exponentially expands the field density to which residents are exposed, the broadcasts not being cohesive EMF, each neighbor is affected by his or her neighbor's use of 5G.

- 7. Our Assembly should insist upon detailed legal analysis before passing SB 649: Under current constructions of The Telecommunications Reform Act of 1996, the companies are protected from liability, whereas it appears that the State is unlikely to benefit from the liability avoidance aspects of the 1996 Act. This is a complex area, to be further litigated, hopefully to correction for the benefit of the consumer, but there is a widely prevailing current legal view that current constructions of the Act protect the companies from any injury claims stemming from radio-frequency exposure. After the SB 649 cellular towers are up, and claims come forward, in any such resulting suits, until the law is more to the benefit of consumers than is currently the apparent case, where manufacturers and Telecom companies and the governmental body are all sued, and telecom can dodge out, there is a substantial legal argument the government entity involved cannot. This Bill sets up the State for massive losses by putting it in the place of an insurance company insuring against losses based on cellular exposure.
- 8. Causation will be a core issue of proof in the wave of Claims and then Complaints on this issue that is inevitable to come, given the science. Ultimate adjudication may be by Court, which is all we have at this point, or perhaps as some now visualize, something akin to the National Vaccine Injury Program, which has dispensed billions of dollars to injured claimants since its inception. Given that with the Firefighter's Exemption the State is acknowledging that its conduct of putting these antennas on every block is intentional conduct being pursued despite clear repeated science-based Notice of the risk. Here, if SB 649 goes forward, despite the repeated clear warnings of harm that have been given in submitted written records, a Court may also reasonably conclude that such further engagement in such State activity is an Extra-Hazardous Activity. The legal point that derives from this is that in Extra-Hazardous Activity the scope of Proximate Cause will be allowed to expand, a factor which puts the State at risk.

If the Assembly goes forward despite this risk, bankruptcy of the State of California can be reasonably expected to result. Just think of the testimony that we've recently heard, on July 12th, from residents who have suffered from and are still fighting brain cancer, which they attribute, with science-based cause, to extensive long term up close exposure to cellular telephony. Thus, if there is a phone-based lawsuit, where the claim derives from an area of SB 649 saturation, the lawyers involved, in order to meet the ordinary standards of care of the work, will be compelled to sue the State. It is further noted that the effective immunities enjoyed by mobile telecom service providers and manufacturers under the 1996 Act are conditional upon the device(s) involved radiating

within the FCC designated range of radiation values, yet our measurements in Palo Alto, for example, show that the strength of the allegedly 'small' cellular devices on poles there are in some instances *multiples* of the approved safety standards for human tissue saturation. In the urban context, with many households, including children, using 5G where cable used to work, most residents of dense apartment buildings will receive radiation saturation not only from what people (multiple TV's) in *their* apartment, but also from broadcast, which is not a cohesive signal, as received by nearby neighbors.

With wide-spread increasing rates of long term use, the inevitable will be put forward based upon alleged injury from a cell phone: Because of the cumulative nature of DNA damage, even with only episodic breakage increases, an upward numerical trend of DNA strand breakage percentage over time appears inevitable if SB 649 is allowed to pass. In normal balance against damaging influences, our bodies rely upon the abilities of the human biological system to self-repair, including at a DNA level, but where the capacity for repair is exceeded by direct exposure (as distinguished from environmental exposure) from a carcinogenic radio source, the potential for increased levels and rates of mutagenic process can reasonably be expected to occur as a result of the overwhelm of such repair capacities: Once the entire urban and suburban areas are densely saturated with so-called 'small cell' 5G (+?) cellular signal, and additionally given the overlapping EMF factors involved, seasoned counsel would always name the telecommunications company, the manufacturer, the seller, the service provider, and now the State, based on SB 649-rooted liability exposure. The State will be permanently exposed to liabilities so numerous and great that all other California state government programs will suffer, from roads to good policing, to schools, to public safety, to pensions.

Our laws recognize both concurrent cause, and joint and several liability where the injury resulted from multiple entities acting in concert. Joint and several liability also results in the instance of the concurring negligence of independent tortfeasors, such as in the classic Summers v. Tice context. As is not uncommon in civil lawsuits, an entity with only a tiny factual contribution to the occurrence of the liability inducing event, say 5% of the negligence pie, under Joint and Several Liability is liable for the whole quantum of the injury involved in the instance of legal unavailability of the other defendants. Therefore, if, post SB 649, there is a cellular device based lawsuit, and 5G radio-frequency saturation was present during time of injury recognition, then normal standard of care obligations, in most instances, would require the naming of that entity by name, if known, as a defendant. Due to the admitted Dangerous Condition of Public Property recognized as dangerous by the Firefighter's exemption) inherent in the melded 'small cell' 5G antenna/pole Public Property, if SB 649 passes, given Joint and Several Liability, if the companies are excluded from liability by federal law, then the State will be the full-paying defendant in such suits. Next discussed below is the question of causation, forced upon us by the looming nightmare of SB 649.

On the Subject of Causation

A science-compliant discussion of non-thermal causation of damage to people by cellular devices is forced upon us here by the incomplete physics analysis which industry lobbyists attempt to repeat in their rebuttal to claims of injury. After the Senate

Appropriations hearing which included SB 649, I was approached in the corridor by a lead lobbyist from a very major telecom company. He said to me, I paraphrase "...you know, Mr. Lehmann, in order to affect tissue molecules without heat, you have to move the neutrons. and there's not enough energy in cellular signal to affect those neutrons."

The above-described exchange with this lobbyist is described in the 14 page letter and sworn Declaration that Mr. McGavin and I presented to the Senate Appropriations Committee. That kindlylobbyist was actually mis-stating the company line: Contrary to the above lobbyist's remarks, the long-stated industry position has not been about 'neutrons,' but rather that: 1) Cellular non-ionizing radiation doesn't have enough energy to directly modify an electron's shell position in an atom, so that the valence of that atom cannot by such cellular radiation be directly changed, and: 2) Therefore direct, non-thermal DNA damage to human tissue is not possible from cellular radiation because the energy involved is not sufficient to occasion molecular re-combination except via heat.

The industry position on the disclosed part of their physics to chemistry argument makes sense: That there is not enough energy in current or anticipated civilian cellular radiation to cause an electron to jump a shell position. However, this electron-shell-no-can-go routine is defective in its predicate: The industry position, choir sung by most industry engineers (not the late great Robert C. Kane), is predicated upon the incorrect assumption that the only mechanism of non-thermal damage is ionic forced change, meaning situations in which so much energy is by radiation placed into the molecules involved that over-loading of charge forces electron migration resulting in molecular recombination, experienced as tissue damage.

Ionic-forced-immediate-direct chemical change, which does occur with ionizing radiation, does not occur with less powerful non-ionizing radiation from cellular devices. However, clear science shows that DNA strand breakage is occurring from the nonionizing radiation from these sources. As you likely know, it is well proven scientifically that high frequency sound can, for example, shatter glass. The data indicate that DNA breakage is resulting from mechanical vibration of the DNA molecule as DNA molecules dissipate the energy which is undeniably pumped into them via radio-frequency EMF. In this regard, the 1983 interferometer findings of Swicord and Brown at the University of Maryland were mentioned in the 14 page compendium which submitted to Senate Appropriations, containing my 7 page letter and Mr. McGavin's Declaration, under Penalty of Perjury, which was also 7 pages, and which 14 page letter to Senator Lara, dated May 23rd, is integrated herein by this reference as though more fully set forth herein. It was found by Swicord/Brown's work that the addition of DNA salts to plain water, to a 7.43 percentage in the resulting fluid, caused a twenty-four fold increase in Specific Absorption Rate, and that this massive 24X change was non-ionic, but rather 'acoustic,' meaning as a result of the mechanical receipt of vibration energy from the cellular frequency by the DNA molecular structure.

Swicord and Brown, as stated in their paper on their interferometer testing of SAR levels, were verifying prior peer-reviewed projections that this level of SAR change in DNA would result. It is my current understanding that Dr. Swicord was at FDA when that agency, which usually passes judgement on radiation-generating consumer products,

exempted cell phones, and then, as I understand it as informed opinion, Dr. Swicord lived out his remaining career at Motorola. So, bottom line, we have extreme vibrational change in DNA from cellular range radiation, namely a drastic 24 fold increase in Specific Absorption Rate. The importance of this repeated finding is best illustrated by the work of Dr. Henry Lai, when this work was published he was with the University of Washington School of Medicine I heard Dr. Lai's presentation of his experimental findings at the International EMF Conference in Stavanger, Norway, in late 2009, and later in Norway was honored to travel to and reside for a while in the mountains over Bergen with the world's top scientists in this field, including people at the level of Dr. Martin Blank of Columbia and Dr. Olle Johansson of the Karlinska Institute, Stockholm.

Dr. Lai's experiments unequivocally proved the fact of DNA strand breakage from cellular telephone radiation. So, once the reader understands that: 1) Through the interferometer work of Swicord and Brown at Maryland, 1983, that DNA change occurs via acoustic means, while also understanding that: 2) The work of Dr. Lai, showing that such cellular signal causes DNA breakage, then it may be responsibly suggested that the occurrence of DNA breakage, not by ionic means, but via acoustic receipt of the vibrational energy. That's how people are getting hurt. Plus the calcium ion findings, noted, supra, from the elegant work of Dr. Pall at the Washington State University, and propriety requires the mention of the ground breaking work of Dr. Andrew Galsworthy of Imperial College London, whose pioneering work regarding the stripping action of cellular and other microwave on intra-cellular calcium is forth in Dr. Galsworthy's March 2012 paper The Biological Effects of Weak Electromagnetic Fields - Problems and Solutions. As to vibrational fracture of the DNA molecule, see also Electrosmog and autoimmunde disease, by scientists Trevor G. Marshall and Trudy J. Rumann Heil. The core point sought to be communicated here is that the industry dirge; 'it can't be us, cause non-ionizing radiation can't force an ionic change,' is an incomplete as an analysis of cell damage causation, because it is a red herring of belief that has distracted the busy from seeing the actual causation.

Many environmental influences can contribute to the formation of the more serious illnesses. The book The Secret History of the War On Cancer, by epidemiologist Dr. Devra Davis is the best available professional source towards an understanding of the relationships between industrial toxins and health patterns in the population. This section on Causation is here only because the industry excuse sheds less light than smoke. By background, I have practiced trial based law for four decades, specializing in engineering and scientific proof cases since 1983. After the deaths of four friends and colleagues from brain cancer, I became a student of the EMF issues, to which issues myself and many others are dedicated to public education, including through our ongoing work at Green Swan, Inc.

SB 649 Seeks to Keep Cellular Telecom Off The Ropes at California's Expense.

Telecom is giant and powerful, but the truth, science, ethics and the law are far more important than the \$1.43 trillion that industry has poured into lobby efforts since 1998 (www.opensecrets.org). But even with all its massive funding, the industry has not been able to buy insurance for this industry regarding potential mobile phone casualties.

The re-insurance industry, giants like Zurich, Lloyds, long ago announced that they would not insure for personal injuries caused by cellular devices. As a result the telecom companies are at this point on their own. If they don't shift liability responsibility to another entity or entities, they face massive and potentially ruinous. Perhaps this led to a multiple stage, difficult to see legal tactic of risk shifting to the public. If something like this were going on, it would all of a sudden make a lot of sense if there were an extreme rush placed on this legislation. Senate Bill 649 mimics legislation that the industry tried to get through the federal Senate (S-19), which didn't work out for them, it was placed on Hold at the end of March, where it now remains, and directly thereafter commenced this massive hard push to get California on board with the same 'seize the light poles' effort, to which obviously immense professional lobby effort is being devoted to an ongoing ongoing push for fast passage. Normally, we could say, 'well, that's life, sometimes you've got to led the big dog eat.' But this situation is very different from ordinary because lives and souls are at stake here. This isn't a game or a hobby, this is serious.

Whether planned or not, after infrastructure is established resulting from SB 649, one crucial result is to transfer the financial burden of impending severe liability exposure from the industry to the government. In the instance of S-19, a substantially duplicate Bill now sensibly remaining on Hold at the federal Senate, the transference of liability exposure would have been to the federal government. With the failure of S-19 at the federal level the telecom industry went immediately to work in California. With the telecom industry having consumed a great feast at the restaurant of commerce, the effect of signing SB-649 into law would be to stick California with the tab for that very feast.

Lawmakers in California to insure that any legislation which is passed will not harm the public. Any member of our Legislature who, *knowing that there is scientific evidence of harm*, votes for SB 649 will be no different than those in power over Flint Michigan, who knew of the health hazards in the water, and yet allowed that public health hazard to continue. However, in terms of the number of people to be severely harmed, the situation with SB 649 is far more severe even than what tragically happened in Flint.

Very truly yours,

Harry V. Lehmann

Transmission Log

LEHMANN LAW OFFICE

Wednesday, 2017-07-19 09:52

14158986959

Date	Time	Type	Job #	Length	Speed	Station Name/Number	Pgs	Status
2017-07-19	09:50	SCAN	02278	2:11	21600	9163192181	10	OK V.34 1B31

Harry Vere Lehmann, Principal Attorney Law Offices of Harry V. Lehmann PC 4 Vineyard Court P. O. Box 1846 Novato, California 94948-1846

Area Code 415 Telephone: 897-2121 Facsimile: 898-6959

Via facsimile of even date and Federal Express.

July 19, 2017

Ms. Jennifer Galehouse, Deputy Chief Consultant Assembly Appropriations Committee State Capitol, Room 2114 Sacramento, CA 95814 Via 10 page fax: 916-319-2181 & Federal Express overnight

Re:

- 1. Incorrect data given in Telecom testimony regarding Liability: The State faces liability exposure from SB 649
- Whether exquisitely planned for this inevitable result, or 'just lucky' for Telecom. SB 649 once deployed will have the effect of shifting massive Industry liability to the State of California.

Dear Ms. Galehouse -

The liability-shift component of the SB 649 issue set has not been previously addressed. I didn't see the underlying liability-shift until after the testimony last Wednesday. The liability-shift consequence of SB 649 is a difficult point to see, but essential to be recognized. This letter is divided into two sections, the GENERAL OVERVIEW which appears next below presents the gist in three pages, and then a larger section titled IN GREATER DETAIL. Because the liability shifting aspect of this analysis was not seen by the undersigned until after the close of testimony on July 12th, and because the Appropriations Committee hearing on SB 649 is only a week away, and because this analysis implies possible billions in losses to the State, an Appropriations Issue, this is an initial overview of the situation in the expectation that seasoned and competent unbiased legal analysis will be made of the most startling of the two issues here addressed, before passage of this Bill: In-depth legal analysis is encouraged.

GENERAL OVERVIEW

This letter reaches the conclusions stated through several vectors of analysis but bottom line this boils down to two core points; 1. During the hearings on SB 649, assurances were given by industry that the telecom companies would be the only entities affected by liability from radiation injuries. That is not true. Rather and instead, through SB 649 California faces potential liability for any injuries claimed to have resulted from the allegedly 'small cell,' antennas delivered to our residents from SB 649. 2. More profound in implication if true, and difficult to see, there is a heretofore non-disclosed sequella from SB 649; the potential transfer all financial liability for cellular injury cases from the telecom corporations to the State.

Susmitted as public comment supporting TargAppeal April 9, 2018

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UCSD

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

LAW OFFICES OF HARRY V. LEHMANN, P.C.

Beatrice Alexandra Golomb, MD, PhD Professor of Medicine UC San Diego School of Medicine 9500 Gilman Drive, #0995 La Jolla, CA 92093-0995 Phone: 858 558-4950 x201

HARRY V. LEHMANN ATTORNEY AT LAW

P.O. Box 1846 Novato, CA 94948 Tel: 415.897.2121 Fax: 415.898.6959

August 18, 2017

To whom it may concern,

I urge in the strongest terms that you vigorously oppose California SB 649.

If this bill passes, many people will suffer greatly, and needlessly, as a direct result.

This sounds like hyperbole. It is not.

My research group at UC San Diego alone has received hundreds of communications from people who have developed serious health problems from electromagnetic radiation, following introduction of new technologies. Others with whom I am in communication, have independently received hundreds of similar reports. Most likely these are a tip of an iceberg of tens or perhaps hundreds of thousands of affected person. As each new technology leading to further exposure to electromagnetic radiation is introduced — and particularly introduced in a fashion that prevents vulnerable individuals from avoiding it — a new group become sensitized to health effects. This is particularly true for pulsed signals in the radiowave and microwave portion of the spectrum, the type for which the proposed bill SB 640 will bypass local control.

Mechanisms by which health effects are exerted have been shown to include oxidative stress (the type of injury against which antioxidants protect, see optional section below), damage to mitochondria (the energy producing parts of cells), damage to cell membranes^{1, 21}, and via these mechanisms, an impaired "blood brain barrier" (the blood brain barrier defends the brain against introduction of foreign substances and toxins; additionally, disruption can lead to brain edema⁶), constriction of blood vessels and impaired blood flow to the brain⁷, and triggering of autoimmune reactions^{8, 9}. Following a large exposure, that depresses antioxidant defenses, magnifying vulnerability to future exposures, some persons no longer tolerate many other forms and intensities of electromagnetic radiation that previously caused them no problem, and that currently cause others no problem. But this group deserves – nay needs – the right to be able to avoid these exposures.

Affected individuals not only experience "symptoms" that "merely" cause them distress and suffering, when they are exposed – symptoms like headaches ^{10,11}, ringing ears ^{10,11} and chest pain ¹⁰ from impaired blood flow, heart rhythm abnormalities ^{10,11}, and inability to sleep ^{10,11}. These symptoms arise from physiological injury. Moreover, many experience significant health problems that can include seizures ¹¹, heart failure, hearing loss ¹²⁻¹⁴ and severe cognitive impairment ^{11,15}. The mechanisms involved are those also involved in development and progression of neurodegenerative conditions including Alzheimer's disease ¹⁶.

Fully half who were employed when their problems developed lost their job because of the problem, among participants of a survey we conducted. They reported that their condition had cost them up to 2 million dollars to date. Many had lost their homes. A number became homeless, and have swelled the ranks of so-called "EMF refugees" Among those affected, many were previously high functioning individuals — engineers, doctors, lawyers. The best and the brightest are among those whose lives — and ability to contribute to society —will be destroyed. High profile individuals with acknowledged electrohypersensitivity include, for instance, Gro Harlem Brundtland — the former 3-time Prime Minister of Norway and former Director General of the World Health Organization Matti Niemela, former Nokia Technology chief²¹; as well as the wife of Frank Clegg²², who formerly headed Microsoft Canada and is current head of Canadians for Safe Technology²³.

Each new roll-out of electromagnetic technology for which exposure is obligatory, swells the ranks of those who develop problems with electromagnetic fields (EMF).- particularly following a significant exposure to pulsed radiowave-microwave radiation, and particularly when people have no ability to avoid it.

Many state that they didn't give credence to the problem (if they had heard of it at all) until they themselves fell prey to it.

This is not a psychologically driven condition. Multiple objective physiological changes reflecting mechanisms of injury have been shown in persons with this condition^{24, 25}.

The role for oxidative stress, that has been shown in innumerable studies (below), is affirmed by evidence of a link of this condition to genetic variants in antioxidant defenses, that are less avid in defending against oxidative stress³⁰⁷ People cannot manipulate their genes, to produce such an outcome by suggestibility.

An analysis by a University of Washington researcher showed that most studies funded by industry reported failure to show physiological effects. However, most studies without such industry bias affirmed effects. This is redolent of findings shown in medicine²⁶, regarding which the former editor in chief of the BMJ (the British Medical Journal), Richard Smith, noted, based on findings of a study, "This {result} suggests that, far from conflict of interest being unimportant in the objective and pure world of science where method and the quality of data is everything, it is the main factor determining the result of studies."²⁷. So where articles deny injury from nonionizing radiowave-microwave radiation, there is commonly a stake aligned with financial benefit from such denial.

Those who are affected are in desperate need of protection by our elected officials. They need creation of safe spaces and housing, and roadways to allow travel, not removal of any prospect of one; protection of local rights to make decisions - not removal of any recourse or ability to avoid what injures them. They are far more strongly in need of protections than a great many protected classes — their problems arose due to actions of others, against which they were given no control — and can be reversed, in most cases, if the assault on them is rolled back. Through no fault of their own, and in some cases against their will (e.g. before opt out was permitted with smart meters), they were subjected to an

exposure that has altered their lives as they knew them, and forced them - needlessly - to the margins of society.

Let our focus be on safer, wired and well shielded technology - not more wireless.

This legislation, if passed, and the resulting unrestricted roll-out of this technology, will predictably and directly injure and disable a new group, and add depth of suffering to those already affected.

In other spheres we abridge freedoms to protect the vulnerable few. We require that every schoolchild be vaccinated, supposedly to protect the vulnerable few who may not respond effectively to a vaccine. The need to protect the vulnerable group is deemed to be so great that it justifies the decision to abridge individual rights.

In contrast, this bill seeks to abridge individual freedoms, and local rights, in the service of harming a vulnerable group, and creating a new one.

(The common factor appears to be that in both cases, the direction is aligned with a powerful industry that influences political decisions.)

Luckily, no abridgment of individual rights and freedoms is required to protect, there.

If any group can opt out (such as, I understand, firefighters*)²⁸; then every group deserves that equal right. Others should not be second class citizens, subject to fewer protections.

It would go far to helping this cause if anyone complicit in promoting or passing the legislation (and then after that, *their* families) were required to be the first subjected, for a substantial test period, to the *greatest* amount of exposure that anyone *else* (and their families) may be subjected to, when new policies of this type are rolled out. It will still not do them equal damage; because they may not represent the vulnerabilities that others will have; but such a policy might help them to think twice. *That* is a bill I would strongly endorse.

Most who are now affected – were not, until they were. This may become you – or your child or grandchild. Moreover, if you have a child, or a grandchild, his sperm, or her eggs (all of which she will already have by the time she is a fetus in utero), will be affected by the oxidative stress damage created by the electromagnetic radiation, in a fashion that may affect your future generations irreparably.

It was noted above that, among survey completers, fully half of those who were employed at the time they developed electrosensitivity, lost employment *due to* this problem. (This may understate the scope of the tragedy, since this most-affected group may be least likely to be able to respond to an online survey.) Many who previously had no problem navigating in the world are now restricted from access to basic services like hospital care, post offices and libraries because of these problems. With each new introduction of technology that exposes many to yet a new nondiscretionary source of electromagnetic radiation, particularly (but not exclusively) that which emits pulsed radiation in the radiowave-microwave part of the spectrum, a new group of people are affected; and the suffering of those who are already affected increases greatly.

Please, defend the public and our future. Protect the rights of the individual and the locality, against a form of incursion that will lead to serious harm to some — and set a terrible precedent. **Vote no on California SB 649**, and urge that everyone else do the same.

Sincerely,

0

Beatrice Alexandra Golomb, MD, PhD Professor of Medicine UC San Diego School of Medicine

*Comment on the fire fighter exemption: "The legislature granted an exemption from SB 649 to the firefighters who requested it for health reasons. Throughout California firefighters have long complained of often disabling symptoms from cell towers on their stations. Cities frequently rent out space on fire stations to add to city revenue. ... Symptoms experienced by the firefighters have included neurological impairment including severe headache, confusion, inability to focus, lethargy, inability to sleep, and inability to wake up for 911 emergency calls. Firefighters have reported getting lost on 911 calls in the same community they grew up in, and one veteran medic forgot where he was in the midst of basic CPR on a cardiac victim and couldn't recall how to start the procedure over again... Prior to the installation of the tower on his station, this medic had not made a single mistake in 20 years. A pilot study (2004) of California firefighters showed brain abnormalities, cognitive impairment, delayed reaction time, and lack of impulse control in all 6 firefighters tested (https://ecfsapi.fcc.gov/file/7022117660.pdf). This study led to the overwhelming passage of Resolution 15 by the International Association of Firefighters in Boston in August 2004. Res. 15 called for further study and was amended to impose a moratorium on the placement of cell towers on fire stations throughout the US and Canada." On the call of the call towers on fire stations throughout the US and Canada.

Optional - More on the Science

There is a robust literature showing that electromagnetic radiation, including in nonionizing frequencies, and at levels^{29, 30} below those that are cause thermal effects (heating) – causes physiological effects, injury, and cell death –not only in humans but many animals and plants^{3, 7, 31-49}. Unsurprisingly, industry has sought – against the tide of evidence to the contrary - to maintain that radiation must be ionizing or heating to cause injury.

Scores or hundreds of studies show that radiation, including specifically radiowave-microwave spectrum radiation, and including low-level exposure, can impair antioxidant defenses, increase "oxidative stress" (free radical injury) and damage mitochondria, the energy producing parts of cells^{1, 2, 34, 50-6930, 70-104105-13646, 137-171}. These effects occur with ionizing and nonionizing radiation, at thermal and subthermal levels. (Indeed, much or most of the damage by ionizing radiation, and radiation above the thermal limit, occurs by mechanisms also documented to occur without ionization, and below the thermal limit.) These

BERKELEY + DAVIS + IRVENE + LOS ANGELES + MERCED + RIVERSEDE + SAN DIEGO + SAN FRANCISCO

mechanisms cohere with the mechanisms documented to play a role in symptoms and health conditions that are reported in those who are electrosensitive – extending to seizures heart failure 177-184 and cognitive decline 5, 32, 57, 108, 185-195

These mechanisms have known involvement in induction of brain cancer, metabolic diseases like obesity and diabetes, autism, autoimmune disease, and neurodegenerative conditions, conditions that have exploded. In each case these have been linked, or presumptively linked, in some studies to electromagnetic radiation^{8, 9, 16, 34, 196-219}

Such radiation also has effects on sperm^{33, 100, 220-228}; and the DNA of sperm²²⁹ (consistent with recent news reports of marked recent declines in sperm counts and function)..

Such radiation also has toxic effects in pregnancy²³⁰, to the fetus and subsequent offspring²³¹⁻²³⁵ including at low levels²³⁶, and is tied to developmental problems in later life, including attention deficit and hyperactivity^{31, 235-241}. It is critical to defend pregnant women (and eggs of girls who may at a later time become pregnant) from exposures with such toxicity.

Electromagnetic radiation across much or most of the spectrum (not excluding visible light) has been shown to depress levels of melatonin^{40,72,242-252}, which is best known for its role in sleep (and indeed, impaired sleep is the most consistent symptom in affected individuals^{10,11}).

Melatonin is in fact a critical antioxidant that defends the body against harm from many toxic exposures including electromagnetic radiation itself 61, 66, 67, 82, 101, 107, 118, 121, 138, 144, 151, 204, 249, 267-284 - reducing the oxidative stress that is implicated in cancer, metabolic diseases like obesity and diabetes, autism, autoimmune disease, bipolar disorder and neurodegenerative conditions, and that also plays a role in heart attack and stroke 9, 285-329330-343

Radiation, and specifically radiation in the radiowave-microwave portion of the spectrum can also depress levels of other critical antioxidant systems that also defend the body against chemical, radiation, and other sources of injury. These other antioxidant systems include the glutathione system, superoxide dismutase and catalase^{81, 102, 115, 116, 233, 344-358} which are also involved in defending against health problems.

This suggests that depression of antioxidant defenses due to electromagnetic radiation may magnify risk of chemically induced health effects (and depression of antioxidant systems due to some chemicals may amplify risk of harm from electromagnetic radiation). Indeed just such effects have been reported^{359, 360}.

References.

- 1. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P. The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 2003;159:471-83.
- 2. Baureus Koch CL, Sommarin M, Persson BR, Salford LG, Eberhardt JL. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 2003;24:395-402.
- 3. Tang J, Zhang Y, Yang L, et al. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015;1601:92-101.
- 4. Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 2009;16:103-12.
- 5. Zhang. Exposure to 900 MHz electromagnetic fields activates the mpk-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015;1609:92-101.
- 6. Adair JC, Baldwin N, Kornfeld M, Rosenberg GA. Radiation-induced blood-brain barrier damage in astrocytoma: relation to elevated gelatinase B and urokinase. J Neurooncol 1999;44:283-9.
- 7. Aalto S, Haarala C, Bruck A, Sipila H, Hamalainen H, Rinne JO. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flow Metab 2006;26:885-90.
- 8. Ivanov AA, Grigor'ev Iu G, Mal'tsev VN, et al. [Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 3. The effect of the long-term non-thermal RF EMF exposure on complement-fixation antibodies against homologenous tissue]. Radiats Biol Radioecol 2010;50:17-21.
- 9. Grigor'ev lu G, Mikhailov VF, Ivanov AA, et al. [Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 4. Manifestation of oxidative intracellular stress-reaction after long-term non-thermal EMF exposure of rats]. Radiats Biol Radioecol 2010;50:22-7.
- 10. Lamech F. Self-reporting of symptom development from exposure to radiofrequency fields of wireless smart meters in victoria, australia: a case series. Altern Ther Health Med 2014;20:28-39.
- 11. Halteman E. Wireless utility meter safety impacts survey: Final Results Summary. Sept 13 2011; (http://emfsafetynetwork.org/wp-content/uploads/2011/09/Wireless-Utility-Meter-Safety-Impacts-Survey-Results-Final.pdf). 97.
- 12. Alsanosi AA, Al-Momani MO, Hagr AA, Almomani FM, Shami IM, Al-Habeeb SF. The acute auditory effects of exposure for 60 minutes to mobile's electromagnetic field. Saudi Med J 2013;34:142-6.
- 13. Karaer I, Simsek G, Gul M, et al. Melatonin protects inner ear against radiation damage in rats. Laryngoscope 2015.
- 14. Celiker H, Ozgur A, Tumkaya L, et al. Effects of exposure to 2100MHz GSM-like radiofrequency electromagnetic field on auditory system of rats. Braz Otorhinolaryngol 2016;S1808-8694:302221.
- 15. Foster S. Health exemption for firefighters sends a message to the world. GALLERY; Posted on June 26, 2017.
- 16. Sobel E, Davanipour Z, Sulkava R, et al. Occupations with exposure to EMFs: a possible link for Alzheimer's disease. Amer J Epidemiol 1995;142:515-24.

- Stein Y. Environmental refugees. UNESCO 10th World Conference on ZBioethics, Medical Ethics and 17. Health Law 2015; Jerusalem, Israel: Jan 6-8.
- 18. From povich CJ. Environmental refugees: Electromagnetic hypersensitivity (EHS) sufferers. Naturalblazecom 2016; Jan 28.
- 19. http://www.emfanalysis.com/emf-refugee/.
- 20. $; \underline{http://articles.latimes.com/2010/feb/15/health/la-he-electromagnetic-syndrome 1-2010 feb 15}.$
- http://stopsmartmetersorguk/former-nokia-chief-mobile-phones-wrecked-my-health/. 21.
- 22. ;http://www.huffingtonpost.ca/frank-clegg/post 5393 b 3745157.html.
- 23. Clegg F. Electrohypersensitivity Is Real. The Huffington Post, Canada 2013; June 12, 2013.
- 24. Belpomme D, Campagnac C, Irigaray P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev Environ Health 2015;30:251-71.
- 25. Heuser G, Heuser SA. Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields. . Rev Environ Health 2017;Jul 5.
- 26. Golomb BA. Conflict of Interest in Medicine
- http://thesciencenetwork.org/programs/beyond-belief-candles-in-the-dark/beatrice-golomb: Beyond Belief: Candles in the Dark, sponsored by The Science Network (tsntv.org), session entitled "This is Your Brain on Politics" Salk Institute. La Jolla, CA. Oct 5; 2008.
- Smith R. Conflicts of interest: how money clouds objectivity. J R Soc Med 2006;99:292-7. 27.
- 28. International Association of Fire Fighters Division of Occupational Health SaM. Position on the health effects from radio frequency/ microwave (RF/MW) radiation in fire department facilities from base stations for anttennas and towers for the conduction of cell phone transmissions. 2006.
- 29. Gurler HS, Bilgici B, Akar AK, Tomak L, Bedir A. Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int J Radiat Biol 2014;90:892-6.
- Jajte J, Zmyslony M. [The role of melatonin in the molecular mechanism of weak, static and extremely 30. low frequency (50 Hz) magnetic fields (ELF)]. Med Pr 2000;51:51-7.
- Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. 31. Biomed Pharmacother 2008;62:104-9.
- 32. Deshmukh PS, Nasare N, Megha K, et al. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol 2015;34:284-90.
- 33. Avendano C, Mata A, Sanchez Sarmiento CA, Doncel GF. Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril 2012;97:39-45 e2.
- 34. Barnes F, Greenenbaum B. Some Effects of Weak Magnetic Fields on Biological Systems: RF fields can change radical concentrations and cancer cell growth rates. IEEE Power Electronics Magazine 2016;3:60-
- 35. Blank M, Goodman R. Comment: a biological guide for electromagnetic safety: the stress response. Bioelectromagnetics 2004;25:642-6; discussion 7-8.

- 36. Burlaka A, Selyuk M, Gafurov M, Lukin S, Potaskalova V, Sidorik E. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methodsX. Int J Radiat Biol 2014;90:357-62.
- 37. Derias EM, Stefanis P, Drakeley A, Gazvani R, Lewis-Jones DI. Growing concern over the safety of using mobile phones and male fertility {THERMAL + NONTHERMAL}. Arch Androl 2006;52:9-14.
- 38. Diem E, Schwarz C, Adlkofer F, Jahn O, Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 2005;583:178-83.
- 39. Ferreira AR, Knakievicz T, Pasquali MA, et al. Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring. Life Sci 2006;80:43-50.
- 40. Halgamuge MN. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits. Radiat Prot Dosimetry 2013;154:405-16.
- 41. Mancinelli F, Caraglia M, Abbruzzese A, d'Ambrosio G, Massa R, Bismuto E. Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: myoglobin. J Cell Biochem 2004;93:188-96.
- 42. Lai H. Research on the neurological effects of nonionizing radiation at the University of Washington. Bioelectromagnetics 1992;13:513-26.
- 43. Lerchl A, Kruger H, Niehaus M, Streckert JR, Bitz AK, Hansen V. Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus) BODY WT CHG. J Pineal Res 2008;44:267-72.
- 44. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 2002;70:120-9.
- 45. Lixia S, Yao K, Kaijun W, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 2006;602:135-42.
- 46. Sahin D, Ozgur E, Guler G, et al. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain. J Chem Neuroanat 2016;75:94-8.
- 47. Song JM, Milligan JR, Sutherland BM. Bistranded oxidized purine damage clusters: induced in DNA by long-wavelength ultraviolet (290-400 nm) radiation? Biochemistry 2002;41:8683-8.
- 48. Yurekli AI, Ozkan M, Kalkan T, et al. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med 2006;25:177-88.
- 49. Tafforeau M, Verdus MC, Norris V, et al. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 2004;25:403-7.
- 50. Ciejka E, Jakubowska E, Zelechowska P, Huk-Kolega H, Kowalczyk A, Goraca A. [Effect of extremely low frequency magnetic field on glutathione in rat muscles]. Med Pr 2014;65:343-9.
- 51. Consales C, Merla C, Marino C, Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012;2012:683897.
- 52. Copeland ES. Production of free radicals in reduced glutathione and penicillamine by thermal hydrogen atoms and X-radiation. Int J Radiat Biol Relat Stud Phys Chem Med 1969;16:113-20.

- 53. Cravotto G, Binello A, Di Carlo S, Orio L, Wu ZL, Ondruschka B. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environ Sci Pollut Res Int 2010;17:674-87.
- 54. Crouzier D, Perrin A, Torres G, Dabouis V, Debouzy JC. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathol Biol (Paris) 2009;57:245-51.
- 55. de Moraes Ramos FM, Schonlau F, Novaes PD, Manzi FR, Boscolo FN, de Almeida SM. Pycnogenol protects against Ionizing radiation as shown in the intestinal mucosa of rats exposed to X-rays. Phytother Res 2006;20:676-9.
- Devi PU, Ganasoundari A. Modulation of glutathione and antioxidant enzymes by Ocimum sanctum and its role in protection against radiation injury. Indian J Exp Biol 1999;37:262-8.
- 57. Deshmukh PS, Banerjee BD, Abegaonkar MP, et al. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys 2013;50:114-9.
- Dimri M, Joshi J, Chakrabarti R, Sehgal N, Sureshbabu A, Kumar IP. Todralazine protects zebrafish from lethal effects of ionizing radiation: role of hematopoietic cell expansion. Zebrafish 2015;12:33-47.
- 59. Dimri M, Joshi J, Shrivastava N, Ghosh S, Chakraborti R, Indracanti PK. Prilocaine hydrochloride protects zebrafish from lethal effects of ionizing radiation: role of hematopoietic cell expansion. Tokai J Exp Clin Med 2015;40:8-15.
- 60. Durovic B, Spasic-Jokic V. Influence of occupational exposure to low-dose ionizing radiation on the plasma activity of superoxide dismutase and glutathione level. Vojnosanit Pregl 2008;65:613-8.
- 61. El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf 2007;66:278-86.
- 62. Falone S, Mirabilio A, Carbone MC, et al. Chronic exposure to 50Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol 2008;40:2762-70.
- 63. Fitzgerald MP, Madsen JM, Coleman MC, et al. Transgenic biosynthesis of trypanothione protects Escherichia coli from radiation-induced toxicity. Radiat Res 2010;174:290-6.
- 64. Giannopoulou E, Katsoris P, Parthymou A, Kardamakis D, Papadimitriou E. Amifostine protects blood vessels from the effects of ionizing radiation. Anticancer Res 2002;22:2821-6.
- 65. Goraca A, Ciejka E, Piechota A. Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart. J Physiol Pharmacol 2010;61:333-8.
- 66. Goswami S, Haldar C. UVB irradiation severely induces systemic tissue injury by augmenting oxidative load in a tropical rodent: efficacy of melatonin as an antioxidant. J Photochem Photobiol B 2014;141:84-92.
- 67. Goswami S, Sharma S, Haldar C. The oxidative damages caused by ultraviolet radiation type C (UVC) to a tropical rodent Funambulus pennanti: role of melatonin. J Photochem Photobiol B 2013;125:19-25.
- 68. Groen HJ, Meijer C, De Vries EG, Mulder NH. Red blood cell glutathione levels in lung cancer patients treated by radiation and continuously infused carboplatin. Anticancer Res 1996;16:1033-7.
- 69. Guler G, Seyhan N, Aricioglu A. Effects of static and 50 Hz alternating electric fields on superoxide dismutase activity and TBARS levels in guinea pigs. Gen Physiol Biophys 2006;25:177-93.
- 70. Guler G, Turkozer Z, Tomruk A, Seyhan N. The protective effects of N-acetyl-L-cysteine and epigallocatechin-3-gallate on electric field-induced hepatic oxidative stress. Int J Radiat Biol 2008;84:669-80.

- 71. Gultekin FA, Bakkal BH, Guven B, et al. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J Radiat Res 2013;54:36-44.
- 72. Halgamuge MN. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure. Indian J Biochem Biophys 2013;50:259-65.
- 73. Irmak MK, Fadillioglu E, Gulec M, Erdogan H, Yagmurca M, Akyol O. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 2002;20:279-83.
- 74. Jagetia G, Baliga M, Venkatesh P. Ginger (Zingiber officinale Rosc.), a dietary supplement, protects mice against radiation-induced lethality: mechanism of action. Cancer Biother Radiopharm 2004;19:422-35.
- 75. Jagetia GC, Malagi KJ, Baliga MS, Venkatesh P, Veruva RR. Triphala, an ayurvedic rasayana drug, protects mice against radiation-induced lethality by free-radical scavenging. J Altern Complement Med 2004;10:971-8.
- 76. Jagetia GC, Venkatesha VA, Reddy TK. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis 2003;18:337-43.
- 77. Jurkiewicz BA, Bissett DL, Buettner GR. Effect of topically applied tocopherol on ultraviolet radiation-mediated free radical damage in skin. J Invest Dermatol 1995;104:484-8.
- 78. Kalns J, Ryan KL, Mason PA, Bruno JG, Gooden R, Kiel JL. Oxidative stress precedes circulatory failure induced by 35-GHz microwave heating. Shock 2000;13:52-9.
- 79. Karslioglu I, Ertekin MV, Taysi S, et al. Radioprotective effects of melatonin on radiation-induced cataract. J Radiat Res (Tokyo) 2005;46:277-82.
- 80. Kim KC, Piao MJ, Cho SJ, Lee NH, Hyun JW. Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. Photodermatol Photoimmunol Photomed 2012;28:322-31.
- 81. Klebanoff SJ. The effect of x-radiation on the glutathione metabolism of intact erythrocytes in vitro. J Gen Physiol 1958;41:725-36.
- 82. Koc M, Taysi S, Emin Buyukokuroglu M, Bakan N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat Res 2003;160:251-5.
- 83. Koiram PR, Veerapur VP, Kunwar A, et al. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice. J Radiat Res 2007;48:241-5.
- 84. Kowalski S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem 2013;141:1378-82.
- 85. Koylu H, Mollaoglu H, Ozguner F, Naziroglu M, Delibas N. Melatonin modulates 900 Mhz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health 2006;22:211-6.
- 86. Koyu A, Ozguner F, Yilmaz H, Uz E, Cesur G, Ozcelik N. The protective effect of caffeic acid phenethyl ester (CAPE) on oxidative stress in rat liver exposed to the 900 MHz electromagnetic field. Toxicol Ind Health 2009;25:429-34.
- 87. Lai H, Singh NP. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 1997;18:446-54.
- 88. Lai H, Singh NP. Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 1997;22:152-62.

- 89. Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004;112:687-94.
- 90. Lantow M, Schuderer J, Hartwig C, Simko M. Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation. Radiat Res 2006;165:88-94.
- 91. Lee BC, Johng HM, Lim JK, et al. Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 2004;73:43-8.
- 92. Lee JH, Park JW. The effect of alpha-phenyl-N-t-butylnitrone on ionizing radiation-induced apoptosis in U937 cells. Free Radic Res 2005;39:1325-33.
- 93. Li HT, Schuler C, Leggett RE, Levin RM. Differential effects of coenzyme Q10 and alpha-lipoic acid on two models of in vitro oxidative damage to the rabbit urinary bladder. Int Urol Nephrol 2011;43:91-7.
- 94. Li P, Zhao QL, Wu LH, et al. Isofraxidin, a potent reactive oxygen species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner. Apoptosis 2014;19:1043-53.
- 95. Lin SY, Chang HP. Induction of superoxide dismutase and catalase activity in different rat tissues and protection from UVB irradiation after topical application of Ginkgo biloba extracts. Methods Find Exp Clin Pharmacol 1997;19:367-71.
- 96. Lourencini da Silva R, Albano F, Lopes dos Santos LR, Tavares AD, Jr., Felzenszwalb I. The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep 2000;5:299-301.
- 97. Low WK, Sun L, Tan MG, Chua AW, Wang DY. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line. Acta Otolaryngol 2008;128:440-5.
- 98. Lulli M, Witort E, Papucci L, et al. Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo. J Radiat Res 2012;53:695-703.
- 99. Maaroufi K, Save E, Poucet B, Sakly M, Abdelmelek H, Had-Aissouni L. Oxidative stress and prevention of the adaptive response to chronic iron overload in the brain of young adult rats exposed to a 150 kilohertz electromagnetic field. Neuroscience 2011;186:39-47.
- 100. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo) 2009;64:561-5.
- 101. Manda K, Anzai K, Kumari S, Bhatia AL. Melatonin attenuates radiation-induced learning deficit and brain oxidative stress in mice. Acta Neurobiol Exp (Wars) 2007;67:63-70.
- 102. Manda K, Bhatia AL. Pre-administration of beta-carotene protects tissue glutathione and lipid peroxidation status following exposure to gamma radiation. J Environ Biol 2003;24:369-72.
- 103. Manda K, Reiter RJ. Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol 2010;90:60-8.
- 104. Martinez-Samano J, Torres-Duran PV, Juarez-Oropeza MA, Elias-Vinas D, Verdugo-Diaz L. Effects of acute electromagnetic field exposure and movement restraint on antioxidant system in liver, heart, kidney and plasma of Wistar rats: a preliminary report. Int J Radiat Biol 2010;86:1088-94.
- 105. Mathew ST, Bergstrom P, Hammarsten O. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation. Toxicol Appl Pharmacol 2014;276:188-94.

BERKELEY * DAVIS * RIVENE * LOS ANGELES * MERCED * RIVERSIDE * SAN DIEGO * SAN FRANCISCO

- 106. McArdle AH. Protection from radiation injury by elemental diet: does added glutamine change the effect? Gut 1994;35:S60-4.
- 107. Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med 2014;33:81-91.
- 108. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Abegaonkar MP. Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J Exp Biol 2012;50:889-96.
- 109. Mishra S, Reddy DS, Jamwal VS, et al. Semiquinone derivative isolated from Bacillus sp. INM-1 protects cellular antioxidant enzymes from gamma-radiation-induced renal toxicity. Mol Cell Biochem 2013;379:19-27.
- 110. Mitchell JB, Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer Suppl 1987;8:96-104.
- 111. Molla M, Gironella M, Salas A, et al. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys 2005;61:1159-66.
- 112. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fano G, Mariggio MA. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radic Biol Med 2010;48:579-89.
- 113. Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 2001;26:605-8.
- 114. Musaev AV, Ismailova LF, Shabanova AB, Magerramov AA, Iusifov E, Gadzhiev AM. [Pro- and antioxidant effect of electromagnetic fields of extremely high frequency (460 MHz) on brain tissues in experiment]. Vopr Kurortol Fizioter Lech Fiz Kult 2004:19-23.
- 115. Mukundan H, Bahadur AK, Kumar A, et al. Glutathione level and its relation to radiation therapy in patients with cancer of uterine cervix. Indian J Exp Biol 1999;37:859-64.
- 116. Navarro J, Obrador E, Pellicer JA, Aseni M, Vina J, Estrela JM. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic Biol Med 1997;22:1203-9.
- 117. Okano H. Effects of static magnetic fields in biology: role of free radicals. Front Biosci 2008;13:6106-25.
- 118. Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 2005;36:350-5.
- 119. Oral B, Guney M, Ozguner F, et al. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther 2006;23:957-73.
- 120. Ozguner F, Altinbas A, Ozaydin M, et al. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health 2005;21:223-30.
- 121. Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 2006;282:83-8.
- 122. Ozguner F, Oktem F, Armagan A, et al. Comparative analysis of the protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on mobile phone-induced renal impairment in rat. Mol Cell Biochem 2005;276:31-7.

- 123. Ozguner F, Oktem F, Ayata A, Koyu A, Yilmaz HR. A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination. Mol Cell Biochem 2005;277:73-80.
- 124. Ozyurt H, Cevik O, Ozgen Z, et al. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic Res 2014;48:1247-55.
- 125. Pall ML. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health 2015;30:99-116.
- 126. Patruno A, Tabrez S, Pesce M, Shakil S, Kamal MA, Reale M. Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythroleukemic cells. Life Sci 2015;121:117-23.
- 127. Patwardhan RS, Sharma D, Checker R, Thoh M, Sandur SK. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radic Res 2015;49:1218-32.
- 128. Paul P, Bansal P, Nayak PG, Pannakal ST, Priyadarsini KI, Unnikrishnan MK. Polyphenolic fraction of Pilea microphylla (L.) protects Chinese hamster lung fibroblasts against gamma-radiation-induced cytotoxicity and genotoxicity. Environ Toxicol Pharmacol 2012;33:107-19.
- 129. Pei H, Chen W, Hu W, et al. GANRA-5 protects both cultured cells and mice from various radiation types by functioning as a free radical scavenger. Free Radic Res 2014;48:670-8.
- 130. Piao MJ, Hyun YJ, Oh TH, et al. Chondracanthus tenellus (Harvey) hommersand extract protects the human keratinocyte cell line by blocking free radicals and UVB radiation-induced cell damage. In Vitro Cell Dev Biol Anim 2012;48:666-74.
- 131. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation a review. Int J Cosmet Sci 2005;27:17-34.
- 132. Rabbani ZN, Salahuddin FK, Yarmolenko P, et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2007;41:1273-82.
- 133. Regoli F, Gorbi S, Machella N, et al. Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radic Biol Med 2005;39:1620-8.
- 134. Reliene R, Pollard JM, Sobol Z, Trouiller B, Gatti RA, Schiestl RH. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res 2009;665:37-43.
- 135. Roginskaya M, Bernhard WA, Razskazovskiy Y. Protection of DNA against direct radiation damage by complex formation with positively charged polypeptides. Radiat Res 2006;166:9-18.
- 136. Saenko Y, Cieslar-Pobuda A, Skonieczna M, Rzeszowska-Wolny J. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res 2013;180:360-6.
- 137. Sainz RM, Reiter RJ, Tan DX, et al. Critical role of glutathione in melatonin enhancement of tumor necrosis factor and ionizing radiation-induced apoptosis in prostate cancer cells in vitro. J Pineal Res 2008;45:258-70.

- 138. Sener G, Jahovic N, Tosun O, Atasoy BM, Yegen BC. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci 2003;74:563-72.
- 139. Sener G, Kabasakal L, Atasoy BM, et al. Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats. Pharmacol Res 2006;53:241-52.
- 140. Seyhan N, Guler G. Review of in vivo static and ELF electric fields studies performed at Gazi Biophysics Department. Electromagn Biol Med 2006;25:307-23.
- 141. Shafiee H, Mohammadi H, Rezayat SM, et al. Prevention of malathion-induced depletion of cardiac cells mitochondrial energy and free radical damage by a magnetic magnesium-carrying nanoparticle. Toxicol Mech Methods 2010;20:538-43.
- 142. Sharma R, Tiku AB. Emodin, an anthraquinone derivative, protects against gamma radiation-induced toxicity by inhibiting DNA damage and oxidative stress. Int J Radiat Biol 2014;90:275-83.
- 143. Shi S, Wang G, Wang Y, Zhang L, Zhang L. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 2005;13:1-9.
- 144. Shirazi A, Mihandoost E, Mohseni M, Ghazi-Khansari M, Rabie Mahdavi S. Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med 2013;29:65-74.
- 145. Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 2007;14:1141-52.
- 146. Simko M, Droste S, Kriehuber R, Weiss DG. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 2001;80:562-6.
- 147. Sirerol JA, Feddi F, Mena S, et al. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis. Free Radic Biol Med 2015;85:1-11.
- 148. Smith-Pearson PS, Kooshki M, Spitz DR, Poole LB, Zhao W, Robbins ME. Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2). Free Radic Biol Med 2008;45:1178-89.
- 149. Song L, Wang D, Cui X, Hu W. The protective action of taurine and L-arginine in radiation pulmonary fibrosis. J Environ Pathol Toxicol Oncol 1998;17:151-7.
- 150. Stevens RG. Electromagnetic fields and free radicals. Environ Health Perspect 2004;112:A726; author reply A.
- 151. Taysi S, Koc M, Buyukokuroglu ME, Altinkaynak K, Sahin YN. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res 2003;34:173-7.
- 152. Thotala D, Chetyrkin S, Hudson B, Hallahan D, Voziyan P, Yazlovitskaya E. Pyridoxamine protects intestinal epithelium from ionizing radiation-induced apoptosis. Free Radic Biol Med 2009;47:779-85.
- 153. Tofani S, Barone D, Berardelli M, et al. Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res 2003;48:83-90.
- Tulard A, Hoffschir F, de Boisferon FH, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Radic Biol Med 2003;35:68-77.

- 155. Tunez I, Drucker-Colin R, Jimena I, et al. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington's disease. J Neurochem 2006;97:619-30.
- von Deutsch AW, Mitchell CD, Williams CE, et al. Polyamines protect against radiation-induced oxidative stress. Gravit Space Biol Bull 2005;18:109-10.
- 157. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, et al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 2002;33:857-63.
- 158. Wolf FI, Torsello A, Tedesco B, et al. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 2005;1743:120-9.
- 159. Xu Y, Parmar K, Du F, Price BD, Sun Y. The radioprotective agent WR1065 protects cells from radiation damage by regulating the activity of the Tip60 acetyltransferase. Int J Biochem Mol Biol 2011;2:295-302.
- 160. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2015;35:186-202.
- 161. Yang Y, Li B, Liu C, et al. Hydrogen-rich saline protects immunocytes from radiation-induced apoptosis. Med Sci Monit 2012;18:BR144-8.
- 162. Yokoyama H, Sato T, Ogata T, Ohya-Nishiguchi H, Kamada H. In vivo longitudinally detected ESR measurements at microwave regions of 300, 700, and 900 MHz in rats treated with a nitroxide radical. J Magn Reson 1997;129:201-6.
- 163. Yokus B, Cakir DU, Akdag MZ, Sert C, Mete N. Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic Res 2005;39:317-23.
- 164. Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 2012;46:147-53.
- 165. Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, Kondo M. Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 2000;7:131-5.
- Zhang R, Kang KA, Piao MJ, et al. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway. Eur J Pharmacol 2008;591:114-23.
- 167. Zhou BR, Yin HB, Xu Y, et al. Baicalin protects human skin fibroblasts from ultraviolet A radiation-induced oxidative damage and apoptosis. Free Radic Res 2012;46:1458-71.
- 2hu W, Xu J, Ge Y, et al. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. J Radiat Res 2014;55:1056-65.
- 2 Zmyslony M, Palus J, Dziubaltowska E, et al. Effects of in vitro exposure to power frequency magnetic fields on UV-induced DNA damage of rat lymphocytes. Bioelectromagnetics 2004;25:560-2.
- 170. Zmyslony M, Politanski P, Rajkowska E, Szymczak W, Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 2004;25:324-8.
- The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro. Bioelectromagnetics 2004;25:607-12.

- 172. Petty RK, Harding AE, Morgan-Hughes JA. The clinical features of mitochondrial myopathy. Brain 1986;109 (Pt 5):915-38.
- 173. Frantseva MV, Velazquez JL, Hwang PA, Carlen PL. Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci 2000;12:1431-9.
- 174. DiMauro S, Andreu AL, De Vivo DC. Mitochondrial disorders. J Child Neurol 2002;17 Suppl 3:3S35-45; discussion 3S6-7.
- 175. Marin-Garcia J, Goldenthal MJ, Filiano JJ. Cardiomyopathy associated with neurologic disorders and mitochondrial phenotype. J Child Neurol 2002;17:759-65.
- 176. Kouchaki E, Motaghedifard M, Banafshe HR. Effect of mobile phne radiation on pentylenetetrazole-induced seizure threshold in mice. Iran J Basic Med Sci 2016;19:800-3.
- 177. Madmani ME, Yusuf Solaiman A, Tamr Agha K, et al. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev 2014;6:CD008684.
- 178. Taub PR, Ramirez-Sanchez I, Ciaraldi TP, et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin Transl Sci 2012;5:43-7.
- 179. Indik JH, Goldman S, Gaballa MA. Oxidative stress contributes to vascular endothelial dysfunction in heart failure. Am J Physiol Heart Circ Physiol 2001;281:H1767-70.
- 180. Sharma R, Davidoff MN. Oxidative stress and endothelial dysfunction in heart failure. Congest Heart Fail 2002;8:165-72.
- 181. Wolfram R, Oguogho A, Palumbo B, Sinzinger H. Enhanced oxidative stress in coronary heart disease and chronic heart failure as indicated by an increased 8-epi-PGF(2alpha). Eur J Heart Fail 2005;7:167-72.
- 182. White M, Ducharme A, Ibrahim R, et al. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 2006.
- 183. Kang D, Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 2005;12:429-41.
- 184. Kerimoglu G, Mercantepe T, Erol, H.S.
- Turgut, A, Kaya H, Colakoglu S, Odaci E. Effects of long term exposure to 900 megahertz electromagnetic field on heart morphology and biochemistry of male adolescent rats. Biotech Histochem 2016;Aug 11: 1-10 {Epub ahead of print}.
- 185. Finsterer J. Cognitive decline as a manifestation of mitochondrial disorders (mitochondrial dementia). J Neurol Sci 2008;272:20-33.
- 186. Reiter RJ, Tan DX, Pappolla MA. Melatonin relieves the neural oxidative burden that contributes to dementias. Ann N Y Acad Sci 2004;1035:179-96.
- 187. Popescu BO, Toescu EC, Popescu LM, et al. Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 2009;283:99-106.
- 188. Pappolla MA, Chyan YJ, Poeggeler B, et al. Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin. J Pineal Res 1999;27:226-9.
- 189. Matsubara E, Bryant-Thomas T, Pacheco Quinto J, et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J Neurochem 2003;85:1101-8.

- 190. Feng Z, Qin C, Chang Y, Zhang JT. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radic Biol Med 2006;40:101-9.
- 191. Nittby H, Grafstrom G, Tian DP, et al. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 2007.
- 192. Kim JY, Kim HJ, Kwon KN, Park MJ. Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Int J Radiat Biol 2016;Sept 20:1-22 {Epub ahead of print}.
- 193. Mugunthan N, Shanmugasamy K, Anbalagan J, Rajanarayanan S, Meenachi S. Effects of long term exposure of 9001800 MHz radiation emitted from 2G mobile phone on mice hippocampus A histomorphometric study. J Clin Diagn Res 2016;10:AF01-6.
- 194. Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for demenita: a systematic review. BMC Geriatrics 2016;12 Oct:DOI: 10.1186/s12877-016-0342-y.
- 195. Sonmez OF, Odaci E, Bas O, Kaplan S. Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field. Brain Res 2010;1356:95-101.
- 196. Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link Part I. Pathophysiology 2013;20:191-209.
- 197. Zueva NA, Kovalenko AN, Gerasimenko TI, Man'kovskii BN, Korpachova TI, Efimov AS. [Analysis of irradiation dose, body mass index and insulin blood concentration in personnel cleaning up after the Chernobyl nuclear plant accident]. Lik Sprava 2001:26-8.
- 198. Grigor'ev lu G, Grigor'ev OA, Ivanov AA, et al. [Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 1. Mobile communications and changes in electromagnetic conditions for the population. Needs for additional substantiation of the existing hygienic standards]. Radiats Biol Radioecol 2010;50:6-11.
- 199. Grigor'ev Iu G, Grigor'ev OA, Merkulov AV, Shafirkin AV, Vorob'ev AA. [Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 2. General scheme and conditions of the experiment. Development of RF exposure conditions complying with experimental tasks. Animal's status during the long-term exposure]. Radiats Biol Radioecol 2010;50:12-6.
- 200. Grigor'ev lu G, Shafirkin AV, Nosocskii AM. [New data for proving the presence of significant effects of electromagnetic exposure (to autoimmune changes in rats)]. Radiats Biol Radioecol 2011;51:721-30.
- 201. Brainard GC, Kavet R, Kheifets LI. The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature. J Pineal Res 1999;26:65-100.
- 202. Milham S. A cluster of male breast cancer in office workers. Am J Ind Med 2004;46:86-7.
- 203. Milham S, Ossiander E. Electric typewriter exposure and increased female breast cancer mortality in typists. Med Hypotheses 2007;68:450-1.
- 204. Naziroglu M, Tokat S, Demirci S. Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Recept Signal Transduct Res 2012;32:290-7.
- 205. Zhao G, Lin X, Zhou M, Zhao J. Relationship between exposure to extremely low-frequency electromagnetic fields and breast cancer risk: a meta-analysis. Eur J Gynaecol Oncol 2014;35:264-9.
- 206. Coureau G, Bouvier G, Lebailly P, et al. Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med;71:514-22.

- 207. Carlberg M, Hardell L. Decreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phones. Int J Environ Res Public Health 2014;11:10790-805.
- 208. Carlberg M, Hardell L. Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation. Biomed Res Int 2017;2017:9218486.
- 209. Carlberg M, Koppel T, Ahonen M, Hardell L. Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and glioma risk. Am J Ind Med 2017; April 10 (epub ahead of print).
- 210. Carlbert M, Hardell L. Evaluation of mobile phone and cordless phone use and glioma risk using the Bradford Hill viewpoints from 1965 on. Association or causation? Biomed Res Int 2017;Epub Mar 16:https://www.hindawi.com/journals/bmri/2017/9218486/
- 211. Hardell L, Carlberg M, Hansson Mild K. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 2013;20:85-110.
- 212. Hardell L, Carlberg M, Soderqvist F, Mild KH. Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997-2003 and 2007-2009 and use of mobile and cordless phones. Int J Oncol 2013;43:1036-44.
- 213. Hardell L, Carlberg M. Use of mobile and cordless phones and survival of patients with glioma. Neuroepidemiology 2013;40:101-8.
- 214. Hardell L, Carlberg M. Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Rev Environ Health 2013;28:97-106.
- 215. Hardell L, Carlberg M, Hansson Mild K. Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int J Oncol 2011;38:1465-74.
- 216. Hardell L, Carlberg M, Soderqvist F, Mild KH. Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol 2013;43:1833-45.
- 217. Hardell L, Carlberg M. Mobile phone and cordless phone use and the risk for glioma Analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009. Pathophysiology 2015;22:1-13.
- 218. Lerchl A, Kruger H, Niehaus M, Streckert JR, Bitz AK, Hansen V. Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus). J Pineal Res 2008;44:267-72.
- 219. Lerchl A, Klose M, Grote K, et al. Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochem Biophys Res Commun 2015;459:585-90.
- 220. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int 2014;70:106-12.
- 221. Houston BJ, Nixon B, King BV, De Iuliis GN, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction 2016;152:R263-R76.
- 222. Atasoy HI, Gunal MY, Atasoy P, Elgun S, Bugdayci G. Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. J Pediatr Urol;9:223-9.

- 223. Abeleva EA. [Changes of the Nature of Radiation-Induced Mutation in Spermatids of Drosophila under the Influence of Arginine]. Radiobiologiia 1964;4:426-31.
- 224. Hong R, Zhang Y, Liu Y, Weng EQ. [Effects of extremely low frequency electromagnetic fields on DNA of testicular cells and sperm chromatin structure in mice]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2005;23:414-7.
- 225. Ugras MY, Kurus M, Ates B, Soylemez H, Otlu A, Yilmaz I. Prunus armeniaca L (apricot) protects rat testes from detrimental effects of low-dose x-rays. Nutr Res 2010;30:200-8.
- 226. Den Boer PJ, van Loon AA, Mackenbach P, van der Schans GP, Grootegoed JA. Effect of glutathione depletion on the cytotoxicity of xenobiotics and induction of single-strand DNA breaks by ionizing radiation in isolated hamster round spermatids. Journal of reproduction and fertility 1990;88:259-69.
- 227. Liu C, Duan W, Xu S, et al. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 2013;218:2-9.
- 228. Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril 2007;88:957-64.
- Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl 2005;28:171-9.
- 230. Guler G, Tomruk A, Ozgur E, Seyhan N. The effect of radiofrequency radiation on DNA and lipid damage in non-pregnant and pregnant rabbits and their newborns. Gen Physiol Biophys 2010;29:59-66.
- 231. Borhani N, Rajaei F, Salehi Z, Javadi A. Analysis of DNA fragmentation in mouse embryos exposed to an extremely low-frequency electromagnetic field. Electromagn Biol Med 2011;30:246-52.
- 232. Sedeghi T, Ahmadi A, Javadian M, et al. Preterm birth among women living within 600 meters of high voltage overhead power lines: a case-control study. Rom J Intern Med 2017;Apr 18:{Epub ahead of print}.
- 233. Bahreymi Toossi MH, Sadeghnia HR, Mohammad Mahdizadeh Feyzabadi M, et al. Exposure to mobile phone (900-1800 MHz) during pregnancy: tissue oxidative stress after childbirth. J Matern Fetal Neonatal Med 2017;Apr 23 {Epub ahead of print}:1-6.
- 234. Sudan M, Kheifets L, Arah O, Olsen J, Zeltzer L. Prenatal and Postnatal Cell Phone Exposures and Headaches in Children. Open Pediatr Med Journal 2012;6:46-52.
- 235. Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep;2:312.
- 236. Shahin S, Singh VP, Shukla RK, et al. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus. Appl Biochem Biotechnol 2013;169:1727-51.
- 237. Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of prenatal exposure to WiFi signal on postnatal development and behavior in rat: Influence of maternal restraint. Behavioral Brain Research 2017;36:291-302.
- 238. Zarei S, Mortazavi SMJ, Mehdizadeh AR, et al. A Challenging Issue in the Etiology of Speech Problems: The Effect of Maternal Exposure to Electromagnetic Fields on Speech Problems in the Offspring. Journal of Biomedical Physics & Engineering 2015;5:151-4.
- 239. Divan HA, Kheifets L, Obel C, Olsen J. Prenatal and postnatal exposure to cell phone use and behavioral problems in children. Epidemiology 2008;19:523-9.

- 240. Divan HA, Kheifets L, Obel C, Olsen J. Cell phone use and behavioural problems in young children. J Epidemiol Community Health 2012;66:524-9.
- 241. Birks L, Guxens M, Papadopoulou E, et al. Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts. Environment International 2017.
- 242. Reiter RJ. Alterations of the circadian melatonin rhythm by the electromagnetic spectrum: a study in environmental toxicology. Regul Toxicol Pharmacol 1992;15:226-44.
- 243. Reiter RJ. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. J Cell Biochem 1993;51:394-403.
- 244. Reiter RJ. Electromagnetic fields and melatonin production. Biomed Pharmacother 1993;47:439-44.
- 245. Reiter RJ. Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer. Rev Environ Health 1994;10:171-86.
- 246. Fernie KJ, Bird DM, Petitclerc D. Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels. Environ Health Perspect 1999;107:901-4.
- 247. Griefahn B, Kunemund C, Blaszkewicz M, Lerchl A, Degen GH. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate. Ind Health 2002;40:320-7.
- 248. Jarupat S, Kawabata A, Tokura H, Borkiewicz A. Effects of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J Physiol Anthropol Appl Human Sci 2003;22:61-3.
- 249. [Melatonin in the environmental medicine diagnosis in connection with electromagnetic fields: statement of the commission "Methods and Quality Assurance in Environmental Medicine"]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2005;48:1406-8.
- 250. Rapoport SI, Breus TK. [Melatonin as a most important factor of natural electromagnetic fields impacting patients with hypertensive disease and coronary heart disease. Part 1]. Klin Med (Mosk) 2011;89:9-14.
- 251. Dyche J, Anch AM, Fogler KA, Barnett DW, Thomas C. Effects of power frequency electromagnetic fields on melatonin and sleep in the rat. Emerg Health Threats J 2012;5.
- 252. Qin F, Zhang J, Cao H, et al. Effects of 1800-MHz radiofrequency fields on circadian rhythm of plasma melatonin and testosterone in male rats. J Toxicol Environ Health A 2012;75:1120-8.
- 253. Bagchi M, Balmoori J, Ye X, Bagchi D, Ray SD, Stohs SJ. Protective effect of melatonin on naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Mol Cell Biochem 2001;221:49-55.
- 254. Abdel Moneim AE, Ortiz F, Leonardo-Mendonca RC, et al. Protective effects of melatonin against oxidative damage induced by Egyptian cobra (Naja haje) crude venom in rats. Acta Trop 2015;143:58-65.
- Abd-Elghaffar S, El-Sokkary GH, Sharkawy AA. Aluminum-induced neurotoxicity and oxidative damage in rabbits: protective effect of melatonin. Neuro Endocrinol Lett 2005;26:609-16.
- 256. Abdel-Wahab MH, Arafa HM, El-Mahdy MA, Abdel-Naim AB. Potential protective effect of melatonin against dibromoacetonitrile-induced oxidative stress in mouse stomach. Pharmacol Res 2002;46:287-93.
- 257. Abdel-Wahhab MA, Abdel-Galil MM, El-Lithey M. Melatonin counteracts oxidative stress in rats fed an ochratoxin A contaminated diet. J Pineal Res 2005;38:130-5.
- Abraham P, Kolli VK, Rabi S. Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochem Funct 2010;28:426-33.

- Agil A, Reiter RJ, Jimenez-Aranda A, et al. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res 2013;54:381-8.
- 260. Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct 2003;21:121-5.
- Aktas C, Kanter M, Erboga M, Mete R, Oran M. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats. Toxicol Ind Health 2014;30:835-44.
- Albendea CD, Gomez-Trullen EM, Fuentes-Broto L, et al. Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminium. J Trace Elem Med Biol 2007;21:261-8.
- 263. Al-Malki AL. Synergestic effect of lycopene and melatonin against the genesis of oxidative stress induced by cyclophosphamide in rats. Toxicol Ind Health 2014;30:570-5.
- Aranda M, Albendea CD, Lostale F, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and pinoline. J Pineal Res 2010;49:78-85.
- 265. Arushanian EB. [Limitation of oxidative stress as the main factor of the universal protective properties of melatonin]. Eksp Klin Farmakol 2012;75:44-9.
- 266. Bagheri F, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M. Melatonin prevents oxidative damage induced by maternal ethanol administration and reduces homocysteine in the cerebellum of rat pups. Behav Brain Res 2015;287:215-25.
- 267. Aynali G, Naziroglu M, Celik O, Dogan M, Yariktas M, Yasan H. Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur Arch Otorhinolaryngol 2013;270:1695-700.
- 268. Bardak Y, Ozerturk Y, Ozguner F, Durmus M, Delibas N. Effect of melatonin against oxidative stress in ultraviolet-B exposed rat lens. Curr Eye Res 2000;20:225-30.
- Argun M, Tok L, Uguz AC, Celik O, Tok OY, Naziroglu M. Melatonin and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 nm). Eye (Lond) 2014;28:752-60.
- 270. Ayata A, Mollaoglu H, Yilmaz HR, Akturk O, Ozguner F, Altuntas I. Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J Dermatol 2004;31:878-83.
- 271. Bhatia AL, Manda K. Study on pre-treatment of melatonin against radiation-induced oxidative stress in mice. Environ Toxicol Pharmacol 2004;18:13-20.
- 272. Guney Y, Hicsonmez A, Uluoglu C, et al. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine. Braz J Med Biol Res 2007;40:1305-14.
- 273. Jang SS, Kim HG, Lee JS, et al. Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 2013;89:97-105.
- 274. Kim BC, Shon BS, Ryoo YW, Kim SP, Lee KS. Melatonin reduces X-ray irradiation-induced oxidative damages in cultured human skin fibroblasts. J Dermatol Sci 2001;26:194-200.
- 275. Koc M, Taysi S, Buyukokuroglu ME, Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res 2003;44:211-5.
- 276. Manda K, Ueno M, Anzai K. Melatonin mitigates oxidative damage and apoptosis in mouse cerebellum induced by high-LET 56Fe particle irradiation. J Pineal Res 2008;44:189-96.

- 334. Sun GY, Wood WG. Recent developments in understanding oxidative mechanisms and contributions of glial cell activation, mitochondrial dysfunction, and lipids and signaling pathways to neurodegenerative diseases. Preface. Mol Neurobiol 2010;41:53-4.
- 335. Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014;33:106.
- 336. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40.
- 337. Vessby J, Basu S, Mohsen R, Berne C, Vessby B. Oxidative stress and antioxidant status in type 1 diabetes mellitus. J Intern Med 2002;251:69-76.
- Wells PG, McCallum GP, Chen CS, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009;108:4-18.
- 339. Yamamoto T. Autoimmune mechanisms of scleroderma and a role of oxidative stress. Self Nonself 2011;2:4-10.
- 340. Yao Y, Walsh WJ, McGinnis WR, Pratico D. Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 2006;63:1161-4.
- 341. Yu JH, Kim H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 2014;19:97-102.
- 342. Zephy D, Ahmad J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab Syndr 2015;9:127-31.
- 343. Zoroglu SS, Armutcu F, Ozen S, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 2004;254:143-7.
- 344. Torbenko VP, Bogdanova IA, Gerasimov AM. [Effect of a combined radiation lesion on the enzyme activity of the glutathione redox system of the rat liver]. Biull Eksp Biol Med 1983;95:48-50.
- 345. Erden M, Bor NM. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem Med 1984;31:217-27.
- 346. Evans JW, Taylor YC, Brown JM. The role of glutathione and DNA strand break repair in determining the shoulder of the radiation survival curve. Br J Cancer Suppl 1984;6:49-53.
- 347. Boyer TD, Vessey DA, Kempner E. Radiation inactivation of microsomal glutathione S-transferase. J Biol Chem 1986;261:16963-8.
- 348. Connor MJ, Wheeler LA. Depletion of cutaneous glutathione by ultraviolet radiation. Photochem Photobiol 1987;46:239-45.
- 349. Singh LR, Uniyal BP, Mukherjee SK, Sarkar SR, Sharma SK. Effect of whole body gamma-radiation on glutathione reductase of rat tissues. Strahlenther Onkol 1987;163:337-9.
- 350. Leus NF, Kolomiichuk SG, Lishchenko VB. [Activity of glutathione-S-transferase in the blood plasma, liver and crystalline lens tissues as affected by low doses of ionizing radiation and polychromatic light]. Ukr Biokhim Zh 1997;69:54-9.
- 351. Grande S, Luciani AM, Rosi A, et al. Radiation effects on soluble metabolites in cultured HeLa cells examined by 1H MRS: changes in concentration of glutathione and of lipid catabolites induced by gamma rays and proton beams. Int J Cancer 2001;96 Suppl:27-42.
- 352. Rathgen GH. [Radiation-induced changes of the glutathione content of some rat organs modified by cysteine]. Strahlentherapie 1970;139:243-50.

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UCSD

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSEDE • SAN DICTO • SAN FRANCISCO

- Rathgen GH, Lieser H. [Significance of glutathione in radiation effect studies and chemical radiation protection]. Strahlentherapie 1972;143:670-6.
- 354. Sarkar SR, Singh LR, Uniyal BP, Chaudhuri BN. Effect of whole body gamma radiation on reduced glutathione contents of rat tissues. Strahlentherapie 1983;159:32-3.
- 355. Rosi A, Grande S, Luciani AM, et al. Role of glutathione in apoptosis induced by radiation as determined by 1H MR spectra of cultured tumor cells. Radiat Res 2007;167:268-82.
- Tanita J, Tsuchida S, Hozawa J, Sato K. Expression of glutathione S-transferase-pi in human squamous cell carcinomas of the pharynx and larynx. Loss after radiation therapy. Cancer 1993;72:569-76.
- 357. Vartanyan LS, Gurevich SM, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochemistry (Mosc) 2000;65:442-6.
- Woodward GE. The effect of ultra-violet, radium and X-ray radiation on glutathione in pure solution. Biochem J 1933;27:1411-4.
- 359. Byun YH, Ha M, Kwon HJ, et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: a longitudinal study. PLoS One 2013;8:e59742.
- 360. Sanie-Jahromi F, Saadat Z, Saadat M. Effects of extremely low frequency electromagnetic fields and cisplatin on mRNA levels of some DNA repair genes. Life Sciences 2016;3205:30588-4.

- 334. Sun GY, Wood WG. Recent developments in understanding oxidative mechanisms and contributions of glial cell activation, mitochondrial dysfunction, and lipids and signaling pathways to neurodegenerative diseases. Preface. Mol Neurobiol 2010;41:53-4.
- 335. Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014;33:106.
- 336. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40.
- 337. Vessby J, Basu S, Mohsen R, Berne C, Vessby B. Oxidative stress and antioxidant status in type 1 diabetes mellitus. J Intern Med 2002;251:69-76.
- Wells PG, McCallum GP, Chen CS, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009;108:4-18.
- 339. Yamamoto T. Autoimmune mechanisms of scleroderma and a role of oxidative stress. Self Nonself 2011;2:4-10.
- 340. Yao Y, Walsh WJ, McGinnis WR, Pratico D. Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 2006;63:1161-4.
- 341. Yu JH, Kim H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 2014;19:97-102.
- 342. Zephy D, Ahmad J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab Syndr 2015;9:127-31.
- 343. Zoroglu SS, Armutcu F, Ozen S, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 2004;254:143-7.
- Torbenko VP, Bogdanova IA, Gerasimov AM. [Effect of a combined radiation lesion on the enzyme activity of the glutathione redox system of the rat liver]. Biull Eksp Biol Med 1983;95:48-50.
- 345. Erden M, Bor NM. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem Med 1984;31:217-27.
- Evans JW, Taylor YC, Brown JM. The role of glutathione and DNA strand break repair in determining the shoulder of the radiation survival curve. Br J Cancer Suppl 1984;6:49-53.
- 347. Boyer TD, Vessey DA, Kempner E. Radiation inactivation of microsomal glutathione S-transferase. J Biol Chem 1986;261:16963-8.
- 348. Connor MJ, Wheeler LA. Depletion of cutaneous glutathione by ultraviolet radiation. Photochem Photobiol 1987;46:239-45.
- 349. Singh LR, Uniyal BP, Mukherjee SK, Sarkar SR, Sharma SK. Effect of whole body gamma-radiation on glutathione reductase of rat tissues. Strahlenther Onkol 1987;163:337-9.
- 350. Leus NF, Kolomiichuk SG, Lishchenko VB. [Activity of glutathione-S-transferase in the blood plasma, liver and crystalline lens tissues as affected by low doses of ionizing radiation and polychromatic light]. Ukr Biokhim Zh 1997;69:54-9.
- 351. Grande S, Luciani AM, Rosi A, et al. Radiation effects on soluble metabolites in cultured HeLa cells examined by 1H MRS: changes in concentration of glutathione and of lipid catabolites induced by gamma rays and proton beams. Int J Cancer 2001;96 Suppl:27-42.
- 352. Rathgen GH. [Radiation-induced changes of the glutathione content of some rat organs modified by cysteine]. Strahlentherapie 1970;139:243-50.

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UCSD

BERKELEY • DAVIS • IRVENE • LOS ANGELES • MERCED • RIVERSIDE • SAN DILGO • SAN FRANCISCO

- Rathgen GH, Lieser H. [Significance of glutathione in radiation effect studies and chemical radiation protection]. Strahlentherapie 1972;143:670-6.
- 354. Sarkar SR, Singh LR, Uniyal BP, Chaudhuri BN. Effect of whole body gamma radiation on reduced glutathione contents of rat tissues. Strahlentherapie 1983;159:32-3.
- Rosi A, Grande S, Luciani AM, et al. Role of glutathione in apoptosis induced by radiation as determined by 1H MR spectra of cultured tumor cells. Radiat Res 2007;167:268-82.
- Tanita J, Tsuchida S, Hozawa J, Sato K. Expression of glutathione S-transferase-pi in human squamous cell carcinomas of the pharynx and larynx. Loss after radiation therapy. Cancer 1993;72:569-76.
- 357. Vartanyan LS, Gurevich SM, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochemistry (Mosc) 2000;65:442-6.
- Woodward GE. The effect of ultra-violet, radium and X-ray radiation on glutathione in pure solution. Biochem J 1933;27:1411-4.
- 359. Byun YH, Ha M, Kwon HJ, et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: a longitudinal study. PLoS One 2013;8:e59742.
- 360. Sanie-Jahromi F, Saadat Z, Saadat M. Effects of extremely low frequency electromagnetic fields and cisplatin on mRNA levels of some DNA repair genes. Life Sciences 2016;3205:30588-4.

BERKELEY * DAVIS * ERMINE * LOS ANGELES * MERCED * RIVERSIDE * SAN DEGO * SAN FRANCISCO

- 334. Sun GY, Wood WG. Recent developments in understanding oxidative mechanisms and contributions of glial cell activation, mitochondrial dysfunction, and lipids and signaling pathways to neurodegenerative diseases. Preface. Mol Neurobiol 2010;41:53-4.
- 335. Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014;33:106.
- 336. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40.
- 337. Vessby J, Basu S, Mohsen R, Berne C, Vessby B. Oxidative stress and antioxidant status in type 1 diabetes mellitus. J Intern Med 2002;251:69-76.
- Wells PG, McCallum GP, Chen CS, et al. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009;108:4-18.
- 339. Yamamoto T. Autoimmune mechanisms of scleroderma and a role of oxidative stress. Self Nonself 2011;2:4-10.
- 340. Yao Y, Walsh WJ, McGinnis WR, Pratico D. Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 2006;63:1161-4.
- 341. Yu JH, Kim H. Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 2014;19:97-102.
- 342. Zephy D, Ahmad J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab Syndr 2015;9:127-31.
- 343. Zoroglu SS, Armutcu F, Ozen S, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 2004;254:143-7.
- Torbenko VP, Bogdanova IA, Gerasimov AM. [Effect of a combined radiation lesion on the enzyme activity of the glutathione redox system of the rat liver]. Biull Eksp Biol Med 1983;95:48-50.
- 345. Erden M, Bor NM. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem Med 1984;31:217-27.
- 346. Evans JW, Taylor YC, Brown JM. The role of glutathione and DNA strand break repair in determining the shoulder of the radiation survival curve. Br J Cancer Suppl 1984;6:49-53.
- 347. Boyer TD, Vessey DA, Kempner E. Radiation inactivation of microsomal glutathione S-transferase. J Biol Chem 1986;261:16963-8.
- 348. Connor MJ, Wheeler LA. Depletion of cutaneous glutathione by ultraviolet radiation. Photochem Photobiol 1987;46:239-45.
- 349. Singh LR, Uniyal BP, Mukherjee SK, Sarkar SR, Sharma SK. Effect of whole body gamma-radiation on glutathione reductase of rat tissues. Strahlenther Onkol 1987;163:337-9.
- 350. Leus NF, Kolomiichuk SG, Lishchenko VB. [Activity of glutathione-S-transferase in the blood plasma, liver and crystalline lens tissues as affected by low doses of ionizing radiation and polychromatic light]. Ukr Biokhim Zh 1997;69:54-9.
- 351. Grande S, Luciani AM, Rosi A, et al. Radiation effects on soluble metabolites in cultured HeLa cells examined by 1H MRS: changes in concentration of glutathione and of lipid catabolites induced by gamma rays and proton beams. Int J Cancer 2001;96 Suppl:27-42.
- 352. Rathgen GH. [Radiation-induced changes of the glutathione content of some rat organs modified by cysteine]. Strahlentherapie 1970;139:243-50.

UNIVERSITY OF CALIFORNIA, SAN DIEGO

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DEGO • SAN FRANCISCO

- 353. Rathgen GH, Lieser H. [Significance of glutathione in radiation effect studies and chemical radiation protection]. Strahlentherapie 1972;143:670-6.
- 354. Sarkar SR, Singh LR, Uniyal BP, Chaudhuri BN. Effect of whole body gamma radiation on reduced glutathione contents of rat tissues. Strahlentherapie 1983;159:32-3.
- 355. Rosi A, Grande S, Luciani AM, et al. Role of glutathione in apoptosis induced by radiation as determined by 1H MR spectra of cultured tumor cells. Radiat Res 2007;167:268-82.
- Tanita J, Tsuchida S, Hozawa J, Sato K. Expression of glutathione S-transferase-pi in human squamous cell carcinomas of the pharynx and larynx. Loss after radiation therapy. Cancer 1993;72:569-76.
- 357. Vartanyan LS, Gurevich SM, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochemistry (Mosc) 2000;65:442-6.
- Woodward GE. The effect of ultra-violet, radium and X-ray radiation on glutathione in pure solution. Biochem J 1933;27:1411-4.
- 359. Byun YH, Ha M, Kwon HJ, et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: a longitudinal study. PLoS One 2013;8:e59742.
- 360. Sanie-Jahromi F, Saadat Z, Saadat M. Effects of extremely low frequency electromagnetic fields and cisplatin on mRNA levels of some DNA repair genes. Life Sciences 2016;3205:30588-4.