Council Priority: Climate/Sustainability and Climate Action Plan

Summary Title: Acceptance of City of Palo Alto Green Stormwater Infrastructure Plan

Title: Acceptance of the City of Palo Alto Green Stormwater Infrastructure Plan in Compliance With the San Francisco Bay Area Municipal Regional Stormwater Permit

From: City Manager

Lead Department: Public Works

Recommendation
Staff recommends that Council:

1. Accept the City of Palo Alto Green Stormwater Infrastructure (GSI) Plan (Attachment A).
2. Direct Staff to implement the GSI Plan in a comprehensive manner when carrying out each Department’s responsibilities.

Executive Summary
Staff recommends that Council accept the City of Palo Alto GSI Plan (Plan) and thereby comply with the State’s Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (MRP) in the San Francisco Bay Area (Order R2-2015-0049). The Plan outlines how the City intends to transform its stormwater infrastructure over years to slow the flow of storm runoff, increase infiltration, recharge groundwater, increase irrigation and other uses, and remove contamination.

This Plan identifies and prioritizes GSI opportunities on City-owned properties to manage stormwater runoff on-site utilizing pervious pavement, bioretention areas, and similar measures. It also describes next steps, which include the consideration of GSI in planning, designing, constructing and maintenance of City Facilities.

Background
Staff envisions gradually integrating GSI measures into the City’s urban landscape while building on and learning from its existing installed systems (Attachment A, Chapter 1). GSI is based on
natural processes and serves as a complementary approach to a traditional (or gray) storm drain system for managing stormwater runoff. GSI provides a pathway for rain water to infiltrate, to have pollutants removed, and, in some cases, to provide water reuse opportunities for irrigation or toilet flushing. The following describes the variety of benefits provided by GSI:

- **direct benefits** such as improving stormwater quality by reducing pollutants conveyed in stormwater to local creeks and the Bay; slowing and reducing flows to the storm drain system and receiving waters; and providing opportunities for rainwater capture and reuse; and
- **ancillary benefits** including reduced ponding and localized flooding; increased tree canopy; decreased urban island effect and climate change impacts; improved air quality; enhanced pedestrian and bicycle transportation facilities; and increased ecological habitat.

This Plan is the first phase in realizing the City’s vision to slow the flow of water and clean stormwater prior to discharge to our local creeks and the Bay. This initial phase identifies and prioritizes GSI opportunities on City-owned properties to manage stormwater runoff on-site, utilizing pervious pavement, bioretention areas, and similar measures. The City’s right-of-way, which includes streets, sidewalks, planter strips, and medians, can also be retrofitted with GSI during transportation improvement projects, creating “Green (or Sustainable) Streets.” The idea of projects in the City’s right-of-way is explored in this Plan phase; however, the next phase will assess how to prioritize right-of-way locations throughout the City; focus on implementation actions; and identify opportunities to increase GSI on private properties, both residential and non-residential.

The major elements in the City’s GSI Plan are briefly listed below and are described further in the Discussion section.

- Description of general types of GSI and of those measures installed in the City
- Plan development process
- Identification and prioritization process for City properties (locations, rather than project concepts)
- Impervious surface targets
- Project tracking system
- Construction guidelines and specifications
- Integration with City plans
- Evaluation of funding options
- Outreach and education
- Implementation plan

1 This Plan defines ponding and localized flooding as less than six inches; however, this definition may be amended after further research. In addition, after performance assessments, the City may find that GSI may be used in areas that have larger amounts of ponding.
• Regulatory Framework

The City is subject to the requirements of the State’s Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit2 in the San Francisco Bay Area (Order R2-2015-0049,) also known as the Municipal Regional Permit (MRP), which became effective on January 1, 2016. The MRP applies to 76 municipalities and flood control agencies that discharge stormwater to the San Francisco Bay (Bay). Under the MRP and previous permits, new development and redevelopment projects on private and public property that exceed certain size thresholds have been required to mitigate stormwater quality impacts by incorporating site design, pollutant source control and stormwater treatment measures (also known as GSI) as appropriate. One of the requirements of the current MRP is to identify public (and potentially) private opportunities to proactively integrate GSI measures into streets, roads, parking lots, roofs, and other elements beyond the current threshold requirements. This long-term GSI Plan serves to meet the MRP requirement and outlines how the City of Palo Alto aims to transform its stormwater infrastructure over years to come.

Discussion
Plan Development Collaboration and Outreach
Internal collaboration during Plan development involved creating an interdepartmental GSI Workgroup, made up of various departments, including Public Works, Planning & Community Environment, Development Services, Transportation, Utilities, and Community Services, that served as stakeholders of this Plan in some fashion. External collaboration was instrumental in developing the GSI Plan, and updates were presented to the Stormwater Management Oversight Committee (SWMOC) on a regular basis. This Committee was formed to review proposed stormwater management capital improvements and operating programs to ensure consistency with the City’s Stormwater Management Fee.

City staff also focused on public education efforts by:

• Presenting to the Parks and Recreation Commission (Nov. 2018 and Jan. 2019) and Planning and Transportation Commission (Jan. 2019);
• Holding a public meeting on March 26, 2019;
• Sharing the 85% and 100% Draft versions of the GSI Plan to the public for feedback;
• Mailing two 2018 utility bill inserts: in August regarding GSI in streets and in April regarding the City’s stormwater rebate program; and
• Establishing a City webpage (www.cityofpaloalto.org/gsi) to provide information about GSI and the Plan. The website was periodically updated with new draft versions of the Plan and, once accepted, the final GSI Plan will also be posted.

Implementation Process

2 See Provision C.3.j. in the MRP for specific language regarding the GSI Plan.
Public Works – Watershed Protection Group staff will serve as the lead for Plan implementation. In order to ensure successful implementation, staff will carry out the following (but not limited to) tasks, while ensuring City staff are provided sufficient opportunities to provide feedback.

1. Conduct regular, collaborative meetings with the GSI Workgroup, which will serve as a platform to assess GSI opportunities; provide feedback on tools, policies, and other products; evaluate and track best practices and lessons learned; and collaborate across departments to create multi-benefit projects and leverage financial resources;
2. Develop applicable tools, policies, guidelines and resources and their updates as needed;
3. Update City documents as needed;
4. Develop necessary evaluation metrics, tracking, and reporting tools; and
5. Track and implement best practices.

Implementation Components
Implementation of this Plan entails the establishment of a transparent and collaborative legal and programmatic structure as well as user-friendly tools and systems, all of which will take time to develop. The following briefly describes some of the items addressed in the Plan as key implementation actions.

1. Updates to Palo Alto Municipal Code
 a. Implementation Authority
 In parallel with the development of the Plan, updates to Palo Alto Municipal Code Chapter 16.11 (to be renamed Stormwater Compliance Program) are being prepared, both to provide appropriate implementation authority for the GSI Plan and to ensure overall compliance with the MRP. The Municipal Code Chapter update is tentatively scheduled to be presented to Council for consideration in late summer 2019.

 b. Increase of Low Impact Development (LID) at parcel scale
 One of the proposed Chapter 16.11 updates would increase the use of LID, a management approach and set of (non-engineered) practices that can reduce runoff and pollutant loadings by managing runoff as close to its source(s) as possible.

2. Updates to City Plans and Programs
 Per the MRP, the City is required to “adopt policies, ordinances, and/or other appropriate legal mechanisms to ensure implementation of the GSI Plan.” Based on an analysis of City planning documents, the Plan references documents that have already been updated; those that will be updated by end of calendar year 2020 (per the MRP); and those that will be updated at a later point. To ensure a smooth transition into Plan implementation, an interim policy will be adopted by the City Manager to begin implementing the Plan in a coordinated fashion. The application of the policy would vary according to Department responsibilities, from managing projects to maintaining assets. The sections below highlight

examples of plans or programs that support the establishment of GSI throughout the City that are anticipated to be included in the City Manager’s policy.

a. Bicycle & Pedestrian Transportation Plan (BPTP) (Office of Transportation)
While an update of the BPTP is not planned to occur by 2020, the interim policy would direct future Transportation projects to consider the feasibility of including GSI until the update occurs. The future update of the BPTP should be based on sustainable street guidelines, which would establish street design standards that would not only consider pedestrian, bike and school safety, but also provide GSI and multiple benefits to highly-used transportation routes.

b. Storm Drain Master Plan (SDMP) (Department of Public Works)
The next update to the SDMP, which identifies and prioritizes capital improvement program (CIP) projects to meet a 10-year storm level of service by the City’s storm drain system, will not be conducted before the end of the MRP term. Meanwhile, the City Manager’s interim policy will direct staff to consider the feasibility of integrating GSI in planned and proposed CIP projects. The future SDMP update should include an analysis of how the combination of both traditional and GSI can provide adequate capacity for all size storms and compare upfront construction costs and short- and long-term maintenance costs of both types of infrastructure.

c. CIP projects (Department of Public Works)
The interim policy will direct staff to evaluate CIP projects for GSI opportunities during the project scoping process. In addition, this policy will direct staff to include in relevant CIP project pages of the capital budget a summary of the evaluation process and results, and estimates for the cost of GSI feature maintenance. Because funding can be a deterrent to full-scale GSI implementation, identification of leveraging opportunities is essential.

3. External Project Oversight
The SWMOC can provide a vehicle for residents and other members of the public to provide feedback and ideas throughout Plan implementation, as it did during its development. Their responsibilities may include making recommendations for consideration by staff; providing feedback on potential projects; and reviewing proposed policies. This oversight is not intended to replace the City’s already existing CIP public review and approval process but will help augment the process with respect to GSI, potentially allowing discussion and consideration of projects at in advance of the existing review process.

4 The specifics of this policy are yet to be determined. Public Works Staff will work with OOT to determine next steps and the language and approach that supports both GSI Plan and OOT goals as well as MRP requirements.

5 One frequently-referenced guideline is the National Association of City Transportation Officials’ 2017 Urban Street Stormwater Guide.
4. **GSI Project Feasibility Assessment**
 Staff will use a standard process to assess the feasibility of integrating GSI into projects that will be vetted by staff and adapted over time. The following briefly describes a proposed process:

 1. Meetings during CIP project scoping process to determine feasibility, placement and extent of GSI measures. Revisit at particular design phases, such as 30, 50, 75 and 90 percent.
 2. Evaluation of GSI feasibility using pre-determined criteria, mapping software, other tools, professional judgement, a budget analysis, and staff collaboration.
 3. Assessment of an evolving project locations list, with prioritized projects considered through the City’s yearly CIP planning process.
 4. Identification of potential opportunities by Public Works – Watershed Protection Group staff through regular plan review processes if not identified through a prior process.

5. **Tracking Tools**
 Practical tools, such as a project checklist, will be available to evaluate the potential integration of GSI, document results and costs, and track the project from planning through design, construction, and maintenance. Not only will projects be evaluated by these tools, but the results will also be distributed to stakeholders via an annual progress report.

6. **Details and Specifications**
 As part of creating a structured program, engineering design standards and specifications will be used, first for City projects, and then made available for use on private properties. A consultant will be retained to assist in the development of City-specific standards, which will be based on a Countywide Handbook and requirements from City departments. This will also allow staff to standardize typical City work practices and designs and assure consistency between various contractors.

7. **Maintenance and Monitoring Plan**
 The long-term maintenance of GSI measures is as crucial to their life cycle as accurate design and construction. A Maintenance and Monitoring Plan will evaluate current practices; identify and schedule responsibilities; conduct effectiveness assessments using an adaptive management approach; set performance goals; assess training needs and opportunities; and identify potential partnerships with local organizations. Staff will apply this Plan to GSI measures on City property and in the right-of-way and provide it as guidance for private landowners.

8. **Pilot Projects**
 a. **CIP Projects**
 In support of the City’s vision, staff will explore and implement pilot projects on City-owned parcels and rights-of-way to assess where and how GSI can be implemented in
the future. The City will also consider pilot projects on properties identified as high priority per the process used in the GSI Plan, such as City-owned parking lots, and those that meet other Department needs, such as Urban Forestry’s shade requirement.

b. Local Partnerships and Volunteer Programs
Partnering with local organizations will allow the City to leverage its resources and obtain additional support to offset high maintenance costs. The City is piloting a program with a local group, Grassroots Ecology, in which the group will draw upon its expertise to conduct non-mechanical maintenance tasks and investigate the use of native plants and pollinators to diversify plant palettes used in bioretention areas. In addition, the pilot will involve educating residents about GSI and training volunteers to monitor and provide minor maintenance support in their neighborhoods.

Next Steps – Further Exploration
Some items deemed necessary to ensure successful long-term implementation of this Plan were identified by staff as needing further exploration beyond the Plan development period or through feedback from the public. The timeline for each item will vary based on available resources, but will be identified and integrated into an overall workplan in the coming months.

1. Right-of-Way Opportunities
The GSI Plan prioritizes City-owned locations but does not identify GSI project opportunities in the City’s rights-of-way. A process will be determined to identify high priority areas as well as procedures to determine project opportunities when staff is evaluating street improvements and enhancements to bicycle and pedestrian features.

2. Project Cost Tracking
The need to track, document and evaluate life cycle costs and avoided costs (e.g., reduction in irrigation use) is important to determine the economic impacts and benefits of GSI Plan implementation. Next steps will involve 1) evaluating cost tracking tools; 2) establishing cost tracking procedures and data analysis methods; 3) determining which cost/benefit approach to use; 4) analyzing data over time that can be used to fortify project opportunity evaluations and budgeting; and 5) adapting systems over time.

3. Funding Analysis
A common concern for a municipal plan that establishes new requirements, particularly leading to new projects, is funding for both construction and maintenance. As such, staff has worked with a consultant to conduct a preliminary analysis of funding opportunities. Staff plans to conduct a more thorough analysis based on the findings and assess current maintenance costs as well as past project costs. This analysis will increase understanding of both construction and maintenance costs for City facilities as well as identify and prioritize funding opportunities.

4. Performance Metrics
There is a clear need to determine what type of performance metric(s) should be used to establish appropriate goals and assess the effectiveness of GSI Plan implementation over time. Additional research will be conducted to determine the best metric for the City considering the availability of data, the cost of obtaining additional data and conducting a baseline analysis, and the work necessary to regularly conduct future analyses to evaluate progress over time.

5. Rating Tools
Evaluating the performance of the design, construction and maintenance of projects can help provide transparency regarding the use of public funds and encourages staff to continuously improve effectiveness. In order to holistically manage complex projects that can meet multiple objectives of various Departments, support the City's Comprehensive and Sustainability and Climate Action Plans (among others), and provide accurate, data-supported results to the public, performance rating tools should be evaluated to choose which best assesses performance of varying scales of GSI projects. Such a tool can be integrated into the GSI evaluation process and follow projects through the design, construction and maintenance phases.

6. Private Property Opportunities
The GSI Plan focuses on public property under the jurisdiction of the City. However, to increase the impact of GSI implementation City-wide, it is imperative to consider the establishment of additional requirements for private property, investigate opportunities to encourage installation of GSI measures in the City’s right-of-way as well as create incentives that will reward private property owners for installing and maintaining GSI beyond what is required. This Plan does not propose new requirements, but rather it sets the stage for increasing the scale of GSI implementation throughout the City. Staff will fully research private property opportunities post-acceptance of this Plan.

Resource Impact
The Stormwater Management Fee ballot measure passed by voters in April 2017 included annual funding to support GSI. Funding to provide seed money for implementation of the GSI plan was allocated in the Fiscal Year 2019 budget at approximately $505,000. This amount is equivalent to about 6.5 percent of the Stormwater Management Fee revenues. Staff is researching additional funding sources, which may include grant funding or funding from individual CIP project budgets, to support the construction and maintenance of GSI measures.

Policy Implications
The GSI Plan is in alignment with both the Comprehensive Plan 2030 and the Sustainability and Climate Action Plan (see the 2019 Earth Day Report). Its implementation necessitates integration of GSI into other pertinent City planning documents (Attachment A, Chapter 8).

Environmental Review
The GSI Plan identifies and prioritizes GSI opportunities on City-owned properties, and describes next steps in the work plan, including a process for consideration of GSI in planning, designing and implementing City projects. The Plan is part of a planning study, and is not a project under the California Environmental Quality Act (CEQA), as it does not have the potential to result in a physical change in the environment. An environmental assessment in accordance with CEQA will be prepared for each constructed project prior to its approval.

Attachments:
- CPA_GSI_Plan_Document_FINAL DRAFT_042319
PAGE INTENTIONALLY LEFT BLANK
CITY OF PALO ALTO

GREEN STORMWATER INFRASTRUCTURE PLAN

Submitted by: City of Palo Alto
250 Hamilton Avenue, Palo Alto, CA 94301

In compliance with Provision C.3.j.i.(1) of Order R2-2015-0049
The City of Palo Alto (City) envisions gradually integrating green stormwater infrastructure (GSI) measures into its urban landscape while building on and learning from its existing installed measures. GSI is based on natural processes and serves as a complementary approach to a traditional (or gray) storm drain system for managing stormwater runoff. The following describes the variety of benefits provided by GSI:

- **direct benefits** such as improving stormwater quality by reducing pollutants conveyed in stormwater to local creeks and the Bay; slowing and reducing flows to the storm drain system and receiving waters; and providing opportunities for rainwater capture and reuse; and

- **ancillary benefits**, including reduced ponding and localized flooding; increased tree canopy; decreased urban island effect and climate change impacts; improved air quality; enhanced pedestrian and bicycle transportation facilities; and increased ecological habitat.

This Plan is the first phase in realizing the City’s vision to integrating GSI into its urban landscape. This initial phase identifies and prioritizes GSI opportunities on City-owned properties to manage stormwater runoff on-site, utilizing pervious pavement, bioretention areas, and similar measures. The City’s right-of-way, which includes streets, sidewalks, planter strips, and medians, can also be retrofitted with GSI during transportation improvement projects, creating “Green (or Sustainable) Streets.” The idea of projects in the City’s right-of-way is explored in this Plan phase; however, the next phase will assess how to prioritize right-of-way locations throughout the City; focus on implementation actions; and identify opportunities to increase GSI on private properties, both residential and non-residential.

The City is subject to the requirements of the State’s Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit in the San Francisco Bay Area (Order R2-2015-0049), also known as the Municipal Regional Permit (MRP), which became effective on January 1, 2016. The MRP applies to 76 municipalities and flood control agencies that discharge stormwater to the San Francisco Bay (Bay). Under the MRP and previous permits, new development and redevelopment projects on private and public property that exceed certain size thresholds have been required to mitigate stormwater quality impacts by incorporating site design, pollutant source control and stormwater treatment measures (also known as GSI) as appropriate. One of the requirements of the current MRP is to identify public (and potentially) private opportunities to proactively integrate GSI measures into streets, roads, parking lots, roofs, and other elements beyond the current threshold requirements. This long-term GSI Plan serves to meet the MRP requirement and outlines how the City of Palo Alto aims to transform its stormwater infrastructure over years to come.

The following serves to meet MRP requirements and has been identified as key items to ensure successful Plan implementation.

PLAN DEVELOPMENT COLLABORATION AND OUTREACH

Internal collaboration during Plan development involved creating an interdepartmental GSI Workgroup, made up of various departments, including Public Works, Planning & Community Environment, Development Services, Transportation, Utilities, and Community Services, that served as stakeholders of this Plan in some fashion. External collaboration with the Stormwater Management Oversight Committee (SWMOC) was instrumental in developing the GSI Plan, and updates were presented to the SWMOC on a regular basis. This Committee was formed to review proposed stormwater management capital improvements and operating programs to ensure consistency with the City’s Stormwater Management Fee.

IMPLEMENTATION COMPONENTS

Implementation of this Plan entails the establishment of a transparent and collaborative legal and programmatic structure as well as user-friendly tools and systems, all of which will take time to develop. The following briefly describes some of the items addressed in the Plan as key implementation actions.

1. **Updates to Palo Alto Municipal Code**
 a. **Implementation Authority**
 In parallel with the development of the Plan, updates to Palo Alto Municipal Code Chapter 16.11 (to be renamed Stormwater Compliance Management Program) are being prepared, both

1This Plan defines ponding and localized flooding as less than six inches; however, this definition may be amended after further research.
2In addition, after performance assessments, the City may find that GSI may be used in areas that have larger amounts of ponding.
3See Provision C.3.j. in the MRP for specific language regarding the GSI Plan.
to provide appropriate implementation authority for the GSI Plan and to ensure overall compliance with the MRP.

b. Increase of Low Impact Development (LID) at Parcel Scale

One of the proposed Chapter 16.11 updates would increase the use of LID, a management approach and set of (non-engineered) practices that can reduce runoff and pollutant loadings by managing runoff as close to its source(s) as possible3.

2. Updates to City Plans and Programs

Per the MRP, the City is required to “adopt policies, ordinances, and/or other appropriate legal mechanisms to ensure implementation of the GSI Plan.” Based on an analysis of City planning documents, the Plan references documents that have already been updated; those that will be updated by end of calendar year 2020 (per the MRP); and those that will be updated at a later point. To ensure a smooth transition into Plan implementation, the City Manager will establish a policy to direct staff to consider GSI in its planning, design, and construction of capital improvement projects (CIPs) and maintenance of its assets. Moreover, it will direct staff to include GSI language as documents are updated. The application of the Policy would vary according to varying Department responsibilities.

3. External Project Oversight

The SWMOC can provide a vehicle for residents and other members of the public to provide feedback and ideas throughout Plan implementation, as it did during its development. Their responsibilities may include making recommendations for consideration by staff; providing feedback on potential projects; and reviewing proposed policies.

4. GSI Project Feasibility Assessment

Staff will use a standard process to assess the feasibility of integrating GSI into projects that will be vetted by staff and adapted over time. The following briefly describes a proposed process:

1. Meetings during CIP project scoping process to determine feasibility, placement and extent of GSI measures. Revisit at particular design phases, such as 30, 50, 75 and 90 percent.
2. Evaluation of GSI feasibility using pre-determined criteria, mapping software, other tools, professional judgement, a budget analysis, and staff collaboration.

3. Assessment of an evolving project locations list, with prioritized projects considered through the City’s yearly CIP planning process.

4. Identification of potential opportunities by Public Works – Watershed Protection Group staff through regular plan review processes if not identified through a prior process.

5. Tracking Tools

Practical tools, such as a project checklist, will be available to evaluate the potential integration of GSI, document results and costs, and track the project from planning through design, construction, and maintenance. Not only will projects be evaluated by these tools, but the results will also be distributed to stakeholders via an annual progress report.

6. Details and Specifications

As part of creating a structured program, engineering design standards and specifications will be used, first for City projects, and then made available for use on private properties. A consultant will be retained to assist in the development of City-specific standards, which will be based on a Countywide Handbook and requirements from City departments. This will also allow staff to standardize typical City work practices and designs and assure consistency between various contractors.

7. Maintenance and Monitoring Plan

The long-term maintenance of GSI measures is as crucial to their life cycle as accurate design and construction. A Maintenance and Monitoring Plan will evaluate current practices; identify and schedule responsibilities; conduct effectiveness assessments using an adaptive management approach; set performance goals; assess training needs and opportunities; and identify potential partnerships with local organizations. Staff will apply this Plan to GSI measures on City property and in the right-of-way and provide it as guidance for private landowners.

8. Pilot Projects

a. CIP Projects

In support of the City’s vision, staff will explore and implement pilot projects on City-owned parcels and rights-of-way to assess where and how GSI can be implemented in the future. The City will also consider pilot projects on

properties identified as high priority per the process used in the GSI Plan, such as City-owned parking lots, and those that meet other Department needs, such as Urban Forestry’s shade requirement.

b. Local Partnerships and Volunteer Programs
Partnering with local organizations will allow the City to leverage its resources and obtain additional support to offset high maintenance costs. The City is piloting a program with a local group, Grassroots Ecology, in which the group will draw upon its expertise to conduct non-mechanical maintenance tasks and investigate the use of native plants and pollinators to diversify plant palettes used in bioretention areas. In addition, the pilot will involve educating residents about GSI and training volunteers to monitor and provide minor maintenance support in their neighborhoods.

NEXT STEPS – FURTHER EXPLORATION
The items below were identified by staff as necessary to ensure successful long-term implementation of this Plan, but need further exploration beyond the Plan development period or through additional feedback from the public.

1. Right-of-Way Opportunities
The GSI Plan prioritizes City-owned locations but does not identify GSI project opportunities in the City’s rights-of-way. A process will be determined to identify high priority areas as well as procedures to determine project opportunities when staff is evaluating street improvements and enhancements to bicycle and pedestrian features.

2. Project Cost Tracking
The need to track, document and evaluate life cycle costs and avoided costs (e.g., reduction in irrigation use) is important to determine the economic impacts and benefits of GSI Plan implementation. Next steps will involve 1) evaluating cost tracking tools; 2) establishing cost tracking procedures and data analysis methods; 3) determining which cost/benefit approach to use; 4) analyzing data over time that can be used to fortify project opportunity evaluations and budgeting; and 5) adapting systems over time.

3. Funding Analysis
A common concern for a municipal plan that establishes new requirements, particularly leading to new projects, is funding for both construction and maintenance. As such, staff will conduct a thorough funding analysis to evaluate funding options and assess current maintenance costs as well as past project costs. This analysis will increase understanding of both construction and maintenance costs for City facilities as well as identify and prioritize funding opportunities.

4. Performance Metrics
There is a clear need to determine what type of performance metric(s) should be used to establish appropriate goals and assess the effectiveness of GSI Plan implementation over time. Additional research will be conducted to determine the best metric for the City considering the availability of data, the cost of obtaining additional data and conducting a baseline analysis, and the work necessary to regularly conduct future analyses to evaluate progress over time.

5. Rating Tools
Evaluating the performance of the design, construction and maintenance of projects can help provide transparency regarding the use of public funds and encourages staff to continuously improve effectiveness. In order to holistically manage complex projects that can meet multiple objectives of various Departments, support the City’s Comprehensive and Sustainability and Climate Action Plans (among others), and provide accurate, data-supported results to the public, performance rating tools should be evaluated to choose which best assesses performance of varying scales of GSI projects. Such a tool can be integrated into the GSI evaluation process and follow projects through the design, construction and maintenance phases.

6. Private Property Opportunities
The GSI Plan focuses on public property under the jurisdiction of the City. However, to increase the impact of GSI implementation City-wide, it is imperative to consider the establishment of additional requirements for private property, investigate opportunities to encourage installation of GSI measures in the City’s right-of-way as well as create incentives that will reward private property owners for installing and maintaining GSI beyond what is required. This Plan does not propose new requirements, but rather it sets the stage for increasing the scale of GSI implementation throughout the City. Staff will fully research private property opportunities post-acceptance of this Plan.
ACKNOWLEDGEMENTS

City staff worked tirelessly and enthusiastically to develop the City of Palo Alto’s Green Stormwater Infrastructure (GSI) Plan, the first phase in realizing the City’s vision of integrating GSI into its urban landscape. Thanks to all staff, the Stormwater Management Oversight Committee and members of the public who contributed their expertise, guidance, ideas and feedback; conducted thorough document reviews; and attended various meetings. Staff looks forward to working together on implementation of this Plan.

FUNDING

Stormwater Management Fee

The City’s GSI Plan was made possible with funding provided by the City’s Stormwater Management Fee that was approved by City of Palo Alto property owners in April 2017.

SPECIAL THANKS TO

Stormwater Management Oversight Committee
Hal Mickelson (Chair)
Dena Mossar (Vice Chair)
David Bower
Peter Drekmeier
Marilyn Keller
Bob Wenzlau
Richard Whaley

CORE TEAM

City of Palo Alto
Brad Eggleston...............Director, Department of Public Works
Phil Bobel....................Assistant Director, Department of Public Works
Karin North...................Manager, Watershed Protection Group, Department of Public Works
Pam Boyle Rodriguez......Manager, Stormwater Compliance Program, Department of Public Works
Isabel Zacharczuk..........Associate Stormwater Engineer, Department of Public Works
Daren Anderson.............Manager, Parks and Open Spaces, Department of Community Services
Jodie Gerhardt...............Manager, Planning, Planning and Community Environment
Jon Hospitalier..............Assistant Director, Department of Public Works
Michel Jeremias.............Senior Engineer, Department of Public Works
Walter Passmore............Urban Forester, Department of Public Works
Sylvia Star-Lack.............Manager, Office of Transportation

CONSULTANTS AND CONTRIBUTORS

EOA, Inc.
Jill Bicknell....................Project Manager

Santa Clara Valley Urban Runoff Pollution Prevention Program
TABLE OF CONTENTS

1. **INTRODUCTION**
 - 1.1 City’s Vision
 - 1.2 The Purpose of this Document
 - 1.3 Green (Stormwater) Infrastructure
 - 1.3.1 Introduction
 - 1.3.2 GSI on City Right-of-Way
 - 1.3.3 Site-Scale GSI
 - 1.3.4 Types of GSI Measures
 - 1.3.5 Examples of Existing GSI Measures within the City of Palo Alto
 - 1.4 Regulatory Context
 - 1.4.1 Federal and State Regulatory Drivers
 - 1.4.2 Regional Regulatory Driver: Municipal Regional Stormwater Permit
 - 1.4.3 Regulatory Requirement Addressed through the GSI Plan

2. **CITY OF PALO ALTO DESCRIPTION AND BACKGROUND**
 - 2.1 Background and Land Use
 - 2.2 Surface Water Bodies and Natural Resources
 - 2.3 Groundwater Resources
 - 2.4 Transportation
 - 2.5 Population and Growth Forecasts

3. **PLAN DEVELOPMENT AND COORDINATION**
 - 3.1 Plan Development Oversight and Staff Involvement
 - 3.2 Public Participation
 - 3.3 SCVURPPP Guidance and Inter-Agency Coordination

4. **PROJECT IDENTIFICATION AND PRIORITIZATION MECHANISM**
 - 4.1 Introduction
 - 4.2 Step One: SWRP Prioritization Summary
 - 4.2.1 Parcel-Based Project Opportunities
 - 4.2.2 Green Street Project Opportunities
 - 4.3 Step Two: City Prioritization Summary for City-Owned Parcels
 - 4.3.1 Overview of City Prioritization Steps
5. IMPERVIOUS SURFACE TARGETS 56

6. PROJECT TRACKING SYSTEM 59
 6.1 City Project Tracking System XX
 6.2 County-Wide Project Tracking System XX
 6.2.1 Data Collection Process XX
 6.2.2 Data Output XX

7. GUIDELINES AND SPECIFICATIONS 60
 7.1 Design Guidelines XX
 7.2 Details and Specifications XX
 7.3 Incorporation of Typical GSI Details and Specifications into City Standards XX
 7.4 Input from City of Palo Alto Staff XX

8. INTEGRATION WITH CITY PLANS AND DOCUMENTS 63
 8.1 Regulatory Requirements XX
 8.2 City Planning Documents XX
 8.3 Special Planning Areas and Specific Plans XX
 8.4 Future Integration of GSI Language XX
 8.5 Regional Plans XX

9. EVALUATION OF FUNDING OPTIONS 69
 9.1 Current Funding Sources XX
 9.2 Evaluation of Additional Funding Options XX
 9.2.1 Alternative Compliance XX
 9.2.2 Balloted Approaches XX
 9.2.3 Benefit Assessment and Community Facilities Districts XX
 9.2.4 Business Improvement Districts XX
 9.2.5 Development Impact Fees XX
 9.2.6 Grants XX
 9.2.7 Integration with Transportation Projects XX
 9.2.8 Long-Term Debt Instruments XX
 9.2.9 Public-Private Partnerships (P3) XX
 9.2.10 Realignment of Municipal Services XX
 9.2.11 Volunteer Programs XX
 9.2.12 Summary of GSI Funding Options XX

10. OUTREACH AND EDUCATION 81
 10.1 Inter-Departmental Meetings XX
 10.2 External Coordination Efforts XX
 10.3 Training XX
 10.4 Informational XX

11. ADOPTION OF THE GSI FRAMEWORK AND PLAN 88

12. LEGAL UPDATES 90
 12.1 Authority to Implement GSI Plan XX
 12.2 Stormwater Municipal Code Update—A Step Toward Increasing Site-Scale LID XX
13. CHANGE OF CITY PERSPECTIVE—POLICIES AND PROGRAMS
 13.1 Updates to City Plans and Programs via a City Manager’s Policy
 13.1.1 Office of Transportation’s Bicycle & Pedestrian Plan (BPTP)
 13.1.2 Department of Public Works, Division of Engineering Services (PWE)
 13.1.3 Community Services Department

14. IMPLEMENTATION COMPONENTS
 14.1 Implementation Management and Coordination
 14.2 External Project Oversight
 14.3 Feasibility Assessment
 14.4 Tracking Tools
 14.5 Details and Specifications
 14.6 Maintenance and Monitoring Plan
 14.7 Pilot Projects
 14.7.1 CIP Pilots
 14.7.2 Local Partnerships and Volunteer Programs

15. NEXT STEPS—FURTHER EXPLORATION
 15.1 Right-of-Way Opportunities
 15.2 Project Cost Tracking
 15.3 Performance
 15.3.1 Performance Metrics
 15.3.2 Rating Tools
 15.4 Funding Analysis
 15.5 Private Property Opportunities

LIST OF TABLES
Table 1.1 Summary of GSI Plan Elements
Table 4.1 Public Parcel and Green Streets Project Location Opportunities
Table 4.2 GSI Project Location Prioritization Criteria
Table 4.3 Prioritization Criteria Values
Table 4.4 Planned City-Owned GSI Measures
Table 5.2 Actual and Predicted Extent of Impervious Surface Retrofits via GSI
 Implementation on Privately-Owned Parcels in the City by 2020, 2030, and 2040
Table 5.3 Projected Cumulative Land Area Anticipated to be Addressed by GSI Facilities
 Installed on Private Property
Table 8.1 City Plans/Policies and Status of GSI Integration
Table 9.1 Potential GSI Funding Strategies for the City

LIST OF FIGURES
Figure 1.4 Example of Bioretention Planter in Southgate Neighborhood, Palo Alto
Figure 1.5 Tree Well with Suspended Pavement System
Figure 1.6 Example of Permeable Interlocking Pavers
Figure 1.7 Example of Pervious Concrete in Bellarmine School, San José
Figure 1.8 Example of Porous Asphalt in Creekside Park, Los Gatos
Figure 1.9 Example of Grid Pavement
Figure 1.10 Infiltration Trench that Captures Runoff from Alley (City of San José Martha Gardens)
Figure 1.11 Example of Subsurface Infiltration System
Figure 1.12 Above-ground Cistern in Mills College, Oakland
Figure 1.13 Subsurface Detention System (City of Philadelphia)
Figure 1.14 Example of Green Roof
Figure 1.15 Stanford/Palo Alto Community Playing Fields: Turf Fields with Below-Grade Facility; Permeable Interlocking Concrete Pavers (bottom left); and a Vegetated Swale (bottom right)

Figure 1.16 Alma Street Infiltration Trench

Figure 1.17 Southgate Neighborhood Green Street: Stormwater Curb Extension and Pervious Pavement Crosswalk

Figure 1.18 Mitchell Park Community Center and Library: Green Roof; Bioretention Area in Parking Lot; and Pervious Pavement Parking Spaces

Figure 1.19 Rinconada Library: Infiltration Trench (left) and Bioretention Area (right)

Figure 1.20 Kellogg Ave. and Middlefield Rd. Three-way Intersection: Stormwater Curb Extension

Figure 2.1 Land Use throughout the City (City of Palo Alto, 2014)

Figure 2.2 Depth to Groundwater and Contamination Plume Approximate Limits

Figure 3.1 City Staff Meetings for GSI Plan Development

Figure 3.2 Inter-Agency Coordination

Figure 4.1 City-Owned Properties and Proposed/Planned Projects Prioritized by Location

Figure 5.1 Existing and Projected Cumulative Land Area Anticipated to be Addressed by GSI in the City of Palo Alto

Figure 7.1 Example Detail of a Bioretention Planter

Figure 9.1 Stormwater Management Fee Allocations

Figure 10.1 City-Wide Outreach and Education Efforts

Figure 10.2 Green Stormwater Infrastructure Utility Bill Insert, 2016 (front and back)

Figure 10.3 Green Stormwater Infrastructure Utility Bill Insert, 2018

Figure 11.1 GSI Plan Acceptance Timeline

Figure 13.1 Faces of Elysian Valley by Freyja Bardell and Brian Howe of Greenmeme (2010-2017)

Figure 13.2 Examples of Downspout Designs (top: “Downspout 101” designed by Buster Simpson; bottom is borrowed from the book “Artful Rainwater Design: Creative Ways to Manage Stormwater”)

Figure 14.1 Maintenance on a Bioretention Feature

Figure 14.2 Hoover Park Rain Garden in Palo Alto Planted by Grassroots Ecology

Figure 15.1 Greenroads Evaluation—West Hacienda Avenue Green Street (City of Campbell)

Figure 15.2 Examples of Rain Barrels Collecting Roof Runoff

Figure 15.3 Examples of Roof Runoff Diverted to Site-Scale Landscaped Areas/Planters

Figure 15.4 Examples of Diversion of Surface Runoff from Impervious Areas to Rain Gardens in a Neighborhood and Small Parking Lot

LIST OF APPENDICES

Appendix A: Proposed Bikeways (per Bicycle and Pedestrian Transportation Plan, 2012)

Appendix B: Historic Land Use in 1980

Appendix C: Key Development Areas

Appendix D: Localized Ponding and FEMA Flood Zone Designations

Appendix E: Trash Generation Designations

Appendix F: Parcel Slope

Appendix G: Contaminated Groundwater Plume Approximate Limits

Appendix H: Existing City-Owned GSI Locations

Appendix I: Quadrant Reference Map for City-Owned Properties and Proposed/Planned Projects Prioritized by Location

Appendix J: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 1A

Appendix K: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 1B

Appendix L: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 2
Appendix M: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 3
Appendix N: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 4
Appendix O: City-Owned Prioritized Project Location List
Appendix P: Integration with City Plans and Documents
Appendix Q: Utilities Department—Electric Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)
Appendix R: Utilities Department—Gas Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)
Appendix S: Utilities Department—Wastewater Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)
Appendix T: Utilities Department—Water Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)

ABBREVIATIONS

ABAG Association of Bay Area Governments
BASMAAA Bay Area Stormwater Management Agencies Association
Bay San Francisco Bay
BID Business Improvement District
BPTP Bicycle & Pedestrian Transportation Plan
Caltrans California Department of Transportation
CFD Community Facilities District
CIP Capital Improvement Project
County Santa Clara County
CPA City of Palo Alto
CWSRF Clean Water State Revolving Fund
EPA Environmental Protection Agency
FEMA Federal Emergency Management Agency
FY Fiscal Year
GI Green Infrastructure
GIS Geographic Information System
GSI Green Stormwater Infrastructure
Handbook SCVURPPP C.3 GSI Handbook
IRWMP Integrated Regional Water Management Plan
LID Low Impact Development
MRP Municipal Regional Stormwater NPDES Permit
NACTO National Association of City Transportation Officials
NPDES National Pollutant Discharge Elimination System
O&M Operation and Maintenance
OOT Office of Transportation
P3 Public Private Partnership
PAUSD Palo Alto Unified School District
PCBs Polychlorinated Biphenyls
POC Pollutant of Concern
PWE Public Works Engineering
RAA Reasonable Assurance Analysis
RFP Request for Proposal
ROW Right-of-Way
RWQCB/Regional San Francisco Bay Regional Water Quality Control Board Water Board
SCVURPPP Santa Clara Valley Urban Runoff Pollution Prevention Program
SDMP Storm Drain Master Plan
SIP Sustainability Implementation Plan
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFEP</td>
<td>San Francisco Estuary Partnership</td>
</tr>
<tr>
<td>SFHA</td>
<td>Special Flood Hazard Area</td>
</tr>
<tr>
<td>SFPUC</td>
<td>San Francisco Public Utilities Commission</td>
</tr>
<tr>
<td>SLR</td>
<td>Sea Level Rise</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>SOFA</td>
<td>South of Forest Area</td>
</tr>
<tr>
<td>State Water Board</td>
<td>State Water Resource Control Board</td>
</tr>
<tr>
<td>STORMS</td>
<td>Strategy to Optimize Resource Management of Stormwater</td>
</tr>
<tr>
<td>SWMF</td>
<td>Stormwater Management Fee</td>
</tr>
<tr>
<td>SWMOC</td>
<td>Stormwater Management Oversight Committee</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resource Control Board</td>
</tr>
<tr>
<td>SWRP</td>
<td>Stormwater Resource Plan</td>
</tr>
<tr>
<td>TIF</td>
<td>Transportation Impact Fee</td>
</tr>
<tr>
<td>UBI</td>
<td>Utility Bill Insert</td>
</tr>
<tr>
<td>UFMP</td>
<td>Urban Forestry Master Plan</td>
</tr>
<tr>
<td>Valley Water</td>
<td>Santa Clara Valley Water District</td>
</tr>
<tr>
<td>VTA</td>
<td>Santa Clara Valley Transportation Authority</td>
</tr>
<tr>
<td>Watershed Protection</td>
<td>Public Works—Environmental Services—Watershed Protection Group</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION
1.1 CITY OF PALO ALTO’S VISION

The City has long been a leader in sustainability, in areas such as greenhouse gas emission reductions, zero waste, energy efficiency, wastewater quality, recycled water and urban forestry. This Green Stormwater Infrastructure (GSI)\(^1\) Plan (Plan) supports and widens the City’s commitment to sustainability by taking a first step in envisioning a different way of managing its stormwater at its source, decreasing water quality impacts to local creeks, Baylands, and the San Francisco Bay (Bay), and harnessing its benefits instead of treating it as a nuisance. This Plan establishes a guidance framework to integrate GSI measures into the City’s urban landscape in combination with targeted, traditional (gray) storm drain system infrastructure improvements to manage intense, large storms. An increase of GSI measures throughout the City can achieve multiple direct and indirect benefits (see Section 1.3.1). Furthermore, the integration of GSI into the current storm drain system may provide cost-effective solutions when strategically planned and implemented. This Plan provides an opportunity to evaluate the use of and determine the balance of both green and gray approaches to manage the City’s stormwater and at the same time provide other benefits to residents and others who work in or visit the City.

Due to its close proximity to the Bay and its changing tides as well as local geology, the City has experienced frequent flooding, from localized ponding issues at street intersections to much more significant amounts that have damaged private properties and public infrastructure. As a result, the City has focused on improving deficiencies in its “gray” storm drain system and maintaining it in optimal condition. However, the impervious nature of cities does not allow rain to infiltrate into the ground and instead increases the rate that stormwater runoff (rainfall that flows over the ground surface) reaches receiving creeks and the Bay. These large volumes of water can erode creeks and wash away important habitat for fish and macroinvertebrates that live in the creek or the Bay. Moreover, stormwater runoff picks up many different pollutants that are found on paved surfaces such as sediment, bacteria, oil and grease, trash, pesticides and metals. These pollutants come from a variety of sources, including pet waste, lawn fertilization, cars, construction sites, illegal dumping and spills, and pesticide application. These pollutants have created havoc in our creeks and the Bay. The use of GSI can help mitigate the urbanization impacts to our City.

1.2 THE PURPOSE OF THIS DOCUMENT

This Plan is the first step (or phase) in realizing the City's Vision. This phase focuses on outlining how to implement the vision on City-owned properties by identifying an information-based, decision-making process to identify and prioritize City properties for potential future GSI project opportunities. In addition, this Plan defines GSI and Low Impact Development (LID) and provides examples that exist in Palo Alto; assesses project opportunities as part of City projects that are planned or proposed by City Departments; identifies prioritization criteria; provides background regarding Plan development; and sets a framework for implementation. The idea of projects in the City’s right-of-way (e.g., streets, sidewalks and planter strips) is briefly explored; however, the next phase will assess project opportunities in right-of-way locations and prioritize them throughout the City, focus on various implementation actions and identify opportunities to increase GSI on private properties, both residential and non-residential.

Although this Plan focuses on retrofitting the City’s current developed areas, it also notes the importance of the City’s open space areas and Baylands, important natural (or green) infrastructure that helps infiltrate rain, protects the City from climate change impacts, and supports a variety of plant and animal species. These valuable resources are outlined in the Parks and Recreation Master Plan and the Baylands Comprehensive Conservation Plan. Therefore, this Plan focuses on Green Stormwater (or built) Infrastructure, which provides an important connection to the aforementioned plans.

In addition, this Plan meets the requirements of the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (MRP) for Phase I municipalities and agencies in the Bay Area (Order R2-2015-0049). One of the MRP’s requirements is a GSI Plan and particular elements that are outlined in Table 1.1. This table also lists other sections that were included to ensure success of both the Plan’s implementation and the GSI measures themselves.

\(^1\)Although the MRP uses the term green infrastructure (GI), the agencies within Santa Clara County, including the City of Palo Alto, prefer to use the term green stormwater infrastructure (GSI). Henceforward, the term GSI will be used.
SECTION 1: INTRODUCTION

1.3 GREEN STORMWATER INFRASTRUCTURE

1.3.1 INTRODUCTION

“Green Stormwater Infrastructure” (GSI) is engineered or man-made infrastructure that is based on natural processes to manage stormwater runoff, creating a sustainable system to manage stormwater (Figure 1.1). GSI is an alternative to traditional, “gray” storm drain infrastructure, providing a vehicle for rain and stormwater to infiltrate, to reduce and/or treat pollutants, and in some cases, to provide water use opportunities for irrigation or toilet flushing to lower demand on potable water. The following describes a variety of benefits:

- **direct benefits** such as improving stormwater quality by reducing pollutants conveyed in stormwater to local creeks and the Bay; slowing and reducing flows to the storm drain system and receiving waters; and providing opportunities for rainwater capture and use; AND

- **ancillary benefits** such as include reduce ponding and localized flooding\(^2\); increased tree canopy; decreased urban island effect and climate change impacts; improved air quality; enhanced pedestrian

TABLE 1.1: SUMMARY OF GSI PLAN ELEMENTS

<table>
<thead>
<tr>
<th>GSI Plan Elements</th>
<th>GSI Plan Section</th>
<th>MRP Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Identification and Prioritization Mechanism</td>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>Prioritized Project Locations and Timeframes</td>
<td>Appendix O</td>
<td>X</td>
</tr>
<tr>
<td>Completed Project Tracking System</td>
<td>6</td>
<td>X</td>
</tr>
<tr>
<td>Guidelines and Specifications</td>
<td>7</td>
<td>X</td>
</tr>
<tr>
<td>Integration with other Plans</td>
<td>8</td>
<td>X</td>
</tr>
<tr>
<td>Evaluation of Funding Options</td>
<td>9</td>
<td>X</td>
</tr>
<tr>
<td>Implementation Mechanisms</td>
<td>14</td>
<td>X</td>
</tr>
<tr>
<td>Outreach and Education</td>
<td>10</td>
<td>X</td>
</tr>
<tr>
<td>Impervious Surface Targets</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>Hydrologic Sizing Requirements</td>
<td>Appendix O</td>
<td>X</td>
</tr>
<tr>
<td>Implementation Schedule</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Maintenance and Monitoring Manual</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>Plan Adoption</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

\(^2\)This Plan defines ponding and localized flooding as less than six inches; however, this definition may be amended after further research. In addition, after performance assessments, the City may find that GSI may be used in areas that have larger amounts of ponding.

Figure 1.1: Example of a Sustainable Stormwater Drainage System (managed with both Green and Gray Infrastructure)

Source: phillywatersheds.org
and bicycle transportation facilities; and increasing ecological habitat.

GSI can be applied at various scales, from a parcel or street to a neighborhood or commercial area. At a larger scale, GSI can refer to the patchwork of larger areas that provides habitat, runoff reduction, cleaner water, and cleaner air. At a smaller scale, GSI refers to engineering systems that mimic the natural hydrologic cycle by capturing, storing, evapotranspiring, and treating water. Examples include, but are not limited to, landscape-based stormwater “biotreatment” or “bioretention” using soil and plants ranging in size from grasses and shrubs to trees; pervious paving systems (e.g., interlocking concrete pavers, porous asphalt, and pervious concrete); rainwater harvesting systems (e.g., cisterns); and other methods to capture and use stormwater as a resource.

Low Impact Development (LID), a subset of larger-scale GSI systems, focuses on designing a site to minimize impervious cover and implementation of practices that can be employed at the parcel-level to control stormwater on-site. These type of practices focus on the infiltration\(^3\), evapotranspiration\(^4\) and the harvesting and use of rainwater. Site design can include disconnecting downspouts and diverting site runoff to landscaping or other permeable features to infiltrate all or the majority of runoff (created by large or long-term storms), thereby managing the amount of pollutants and flows created on-site. These types of LID measures are generally not “engineered” with off-site soils or other especially chosen materials, but are rather a result of site and construction design.

1.3.2 GSI ON CITY RIGHT-OF-WAY

This Plan refers to the establishment of GSI on City-owned properties to manage stormwater runoff on-site at the parcel level, such as with pervious pavement and bioretention areas, to infiltrate runoff and minimize flows to the street and storm drain system. However, the City’s right-of-way, which includes streets, sidewalks, planter strips, and medians, can also be retrofitted with GSI during transportation improvement or significant maintenance projects, creating “Green (or Sustainable) Streets.” Green Streets are usually created in combination with a street design approach in mind called “Complete Streets” (Figure 1.2), which incorporates all modes of travel equally, particularly to increase safety and access for bicyclists and pedestrians. Smart Growth America, an

![FIGURE 1.2: Examples of a Street (top, before) Designed with a “Complete Street” Approach (below, after)](source: urbanland.uli.org)
organization that focuses on strategic urban planning and development, provides helpful resources to fully understand this well-established approach, which can be referenced in City design.

California became the first state to adopt legislation, with Governor Arnold Schwarzenegger signing Assembly Bill 1358 to establish the Complete Streets Act in 2008. The law, which took effect in 2011, requires cities and counties, when updating their general plans, to ensure that local streets and roads meet the needs of all users.

The integration of the goals of both Complete Streets and Green Streets has coined several new terms such as “Living Streets,” “Better Streets” and “Sustainable Streets.” This movement recognizes that environmentally and holistically designed streets achieve multiple benefits: increased multi-modal travel and safety; clean water and air; climate change resilience and mitigation; placemaking and community cohesion; habitat; and energy savings. Types of GSI that might be used in Green Streets include, but are not limited to, the following (Figure 1.3):

- Bioretention planters in the planting area/strip between the curb and sidewalk or as a “bulb-out” to make a street more narrow or add a bicycle or pedestrian feature;
- Pervious pavement in sidewalks, pedestrian walkways or a bike or parking lane. Particular types and designs may be used in streets where appropriate; and
- Trees planted to provide shade, cooling and pedestrian safety

This Plan focuses on identifying, creating and prioritizing GSI opportunities throughout the City at the parcel-scale, with the second phase focusing on the street and neighborhood scale with the intention of spreading and connecting these measures throughout the City over time.

FIGURE 1.3: Examples of Applications of GSI in a Street and Sidewalk

Sources: nacto.org (top left and right); foresthills.com (bottom)
1.3.4 TYPES OF GSI MEASURES
This Section describes types of GSI measures, some of which can be designed and integrated into a combination of applications to the: (1) property or site; and/or (2) City right-of-way or private parking lots, sidewalks and walkways. Some of these features may be best placed within the City right-of-way in order to maximize resources and stormwater management. Although private property owners may use this Section as a general introduction, it should be noted that this Section was focused on the first phase purpose of this Plan, which focuses on City-owned property. A description of the following is provided below: (1) bioretention; (2) stormwater tree well filters and suspended pavement systems; (3) pervious pavement; (4) infiltration facilities; (5) rainwater harvesting and reuse facilities; and (6) green roofs.

The preservation, restoration and creation of open space and natural areas have been one of the City’s goals for many years. Per the City’s “Comprehensive Plan 2030” (adopted in 2017), over one-third of the City’s land area consists of designated Open Space and Public Conservation Land, with most located outside of the densely populated urban section of the City. Although a portion of this land is privately-owned, the majority is devoted to passive use that supports diverse ecosystems, natural assets and wildlife. Moreover, upland/foothill areas act like sponges, allowing rain to be intercepted by vegetation and infiltrate in soils, leading to a significant reduction in stormwater runoff to the downstream watershed. In addition, the City’s Baylands, along the City’s entire shoreline along the Bay, support the spreading of stormwater runoff over its marshlands and filtering of pollutants before flowing into the Bay. Thus, continuing to preserve and restore these open space areas is an important aspect of managing stormwater with a non-gray approach; however, it is not intended to be a highlight of this Plan as they are not constructed or engineered to treat or retain stormwater.

Bioretention Areas

Bioretention areas (Figure 1.4), also known as biotreatment measures, are depressed landscaped areas that consist of a ponding area, mulch layer, plants, and a special soil media composed of sand and compost, underlain by drain rock and an underdrain, if required. Bioretention is designed to retain stormwater
runoff, filter runoff through biotreatment soil media and plant roots, and either infiltrate runoff to underlying soils as allowed by site conditions or release treated runoff to the storm drain system. In some cases, these systems are designed so that infiltration may occur but can also overflow to the storm drain system during large storms. Bioretention areas may be placed in a variety of locations on parcels and within the street right-of-way. Planter strips between sidewalks and curbs may provide space for bioretention, and curb bulb-outs and curb extensions installed for pedestrian access and improved visibility and other transportation benefits can also provide opportunities for siting bioretention facilities. Parking lots can accommodate bioretention areas of any shape in medians, corners, and pockets of space unavailable for parking.

Types of bioretention systems in the streetscape are called stormwater planters, stormwater curb extensions, and stormwater tree well filters (described in the following Section). The configuration of the street and sidewalk, the right-of-way width, and existing and intended uses of the right-of-way dictate which type of system is most appropriate and feasible. A stormwater planter is a linear bioretention facility in the public right-of-way along the edge of the street, in back of either the existing curb or sidewalk. They are deeper than landscaped areas along sidewalks and are designed to have a flat bottom with vertical (typically concrete) sides; however, they can also have sloped sides depending on the amount of space that is available and proximity to sidewalks or paved areas.

A stormwater curb extension (or bulb-out) is a bioretention system that extends into the roadway and involves modification of the curb line and gutter. Stormwater curb extensions may be installed midblock or at an intersection. Stormwater curb extensions and bulb-outs have the added benefits of decreasing street widths and pedestrian crossing distances, and reducing vehicle speed, which can increase bicyclist and pedestrian safety.

Stormwater Tree Well Filters and Suspended Pavement Systems

A stormwater tree well filter is a type of bioretention system consisting of an excavated pit or vault that is filled with biotreatment soil media, planted with a tree and other vegetation, and underlain with drain rock and an underdrain, if needed. Stormwater tree well filters can be constructed in series and linked via a subsurface trench or underdrain. A stormwater tree well filter can require less dedicated space than other bioretention areas.

Suspended pavement systems may be used to provide increased underground treatment area and soil volume. These are structural systems designed to provide support for pavement while preserving larger volumes of uncompacted soil for tree roots. Suspended pavement systems may be any engineered system of structural slabs placed on structural supports or commercially available proprietary structural systems. These systems allow use of a particular soil volume amount, as required by the City’s Urban Forestry Section of the Public Works Department.

Stormwater tree well filters and suspended pavements systems (Figure 1.5) are especially useful in settings between existing sidewalk elements where available space is at a premium or if the site location allows additional catchment of runoff from the adjacent street. They can also be used in curb extensions or bulb-outs, medians, or parking lots if surrounding grades allow for drainage to those areas. The systems can be designed to receive runoff through curb cuts or catch basins, or allow runoff to enter through pervious pavers on top of the structural support.

Figure 1.5: Tree Well with Suspended Pavement System

6Various companies, such as GreenBlue Urban, Deeproot, and CityGreen, create comparable suspended pavement systems.
Pervious Pavement

Pervious pavement is hardscape that allows water to pass through into the ground below. It reduces or eliminates stormwater runoff by providing open pore spaces or joints through which water can enter a storage area filled with gravel prior to infiltrating into the underlying soils or directed to the storm drain via an underdrain. Types of pervious pavement include permeable interlocking concrete pavers (*Figure 1.6*), pervious concrete (*Figure 1.7*), porous asphalt (*Figure 1.8*), and grid pavement (*Figure 1.9*). Pervious pavement is often used in parking areas or on low-speed residential roads with limited vehicle traffic that are not frequently used by larger heavy vehicles where bioretention is not feasible due to space constraints or if there is a need to maintain parking. Pervious pavement does not require a dedicated surface area for treatment and allows a site to maintain its existing hardscape (as opposed to replacement with plant material).

Porous asphalt and pervious concrete are similar to traditional asphalt and concrete, but do not include fine aggregates in the mixture, allowing water to pass through the surface. There are two types of pervious pavers: Permeable Interlocking Concrete Pavers and Permeable Pavers allow water to pass through the joint spacing between solid pavers, and Permeable Pavers allow water to pass through the paver itself and therefore can have tighter joints.

FIGURE 1.6: Example of Permeable Interlocking Pavers

![Example of Permeable Interlocking Pavers](image1.png)

Source: stormwater.allianceforthebay.org/

FIGURE 1.7: Example of Pervious Concrete in Bellarmine School, San José

![Example of Pervious Concrete in Bellarmine School, San José](image2.png)

Source: EOA, Inc.

FIGURE 1.8: Example of Porous Asphalt in Creekside Park, Los Gatos

![Example of Porous Asphalt in Creekside Park, Los Gatos](image3.png)

Source: EOA, Inc.

FIGURE 1.9: Example of Grid Pavement

![Example of Grid Pavement](image4.png)

Source: NACTO
Infiltration Facilities

Where soil conditions and the depth of the water table (depth to groundwater) permit, infiltration facilities can be used to capture stormwater and infiltrate it into native soils. The two primary types are infiltration trenches (Figure 1.10) and subsurface infiltration systems (Figure 1.11). An infiltration trench is an excavated trench backfilled with a stone aggregate, and lined with a filter fabric. Infiltration trenches collect and detain runoff, store it in the void spaces of the aggregate, and allow it to infiltrate into the underlying soil. Infiltration trenches can be used along roadways, alleyways, and the edges or medians of parking lots.

Subsurface infiltration systems may be used beneath parking lots or parks to infiltrate larger quantities of runoff. These systems, also known as infiltration galleries, are underground vaults or pipes that store and infiltrate stormwater while preserving the uses of the land surface above parking lots, parks and playing fields. Storage can take the form of large-diameter perforated metal or plastic pipe, or concrete arches, concrete vaults, plastic chambers or crates with open bottoms. Prefabricated, modular infiltration galleries are available in a variety of shapes, sizes, and material types that are strong enough for heavy vehicle loads.

FIGURE 1.10: Infiltration Trench that Captures Runoff from Alley (City of San José Martha Gardens)

FIGURE 1.11: Example of Subsurface Infiltration System

Rainwater Harvesting and use Facilities
Rainwater harvesting is the process of collecting rainwater from impervious surfaces and storing it for later use. Storage facilities that can be used to harvest rainwater include rain barrels, above-ground or below-ground cisterns (Figure 1.12), open storage reservoirs (e.g., ponds), and various underground storage devices, such as tanks, vaults, pipes, and proprietary storage systems (Figure 1.13). The harvested water is then fed into irrigation systems or non-potable water plumbing systems, either by pumping or by gravity flow. Uses of captured water may include irrigation, vehicle washing, and indoor non-potable use such as toilet flushing, heating and cooling, or industrial processing.

The two most common applications of rainwater harvesting systems are (1) collection of roof runoff from buildings; and (2) collection of runoff from at-grade surfaces or diversion of water from storm drains into large underground storage facilities below parking lots or parks. Rooftop runoff usually contains lower quantities of pollutants than at-grade surface runoff, and can be collected via gravity flow. Underground storage systems typically include mechanical pre-treatment facilities to remove pollutants or microorganisms from stormwater prior to storage and use.

![Figure 1.12: Above-ground Cistern in Mills College, Oakland](Source: EOA, Inc.)

![Figure 1.13: Subsurface Detention System (City of Philadelphia)](Source: Philadelphia Water Department)
Green roofs (Figure 1.14) are vegetated roof systems that filter, absorb, and retain or detain the rain that falls upon them. Green roof systems are comprised of a layer of planting media planted with vegetation, underlain by other structural components including waterproof membranes, synthetic insulation, geofabrics, and underdrains. A green roof can be either “extensive,” with 3 to 7 inches of lightweight planting media and low-profile, low-maintenance plants, or “intensive,” with a thicker (8 to 48 inches) of media, more varied plantings, and a more garden-like appearance. Green roofs can provide high rates of rainfall retention, at both commercial and residential scales given proper design, via plant uptake and evapotranspiration and can decrease peak flow rates in storm drain systems because of the storage that occurs in the planting media during rain events.

1.3.5 EXAMPLES OF EXISTING GSI MEASURES WITHIN THE CITY OF PALO ALTO

The City has been a leader in the implementation of LID and GSI techniques since the early 2000’s. It was one of the first cities in the Bay Area to establish a storm drain utility and adopt a property-based fee in 2005 for managing its drainage infrastructure and complying with water quality requirements. It was also one of the first cities to establish a Stormwater Measures Rebate Program, introduced in 2008, for residents, businesses, and City departments. The Rebate Program provides rebates for capturing rainwater in rain barrels or cisterns, constructing or reconstructing driveways, patios, walkways, and parking lots with permeable pavement, and constructing green roofs.

The City has been requiring private developers to comply with permit requirements for installing stormwater treatment measures on their properties since 2003 (see Section 1.4). In addition, the City has constructed a number of LID and GSI facilities on public property and rights-of-way. Descriptions of these facilities are provided below. Refer to Appendix H for a map of all GSI locations on City property.

Stanford/Palo Alto Community Playing Fields

The Community Playing Fields, also known as Mayfield Sports Park, is a soccer complex at the corner of Page Mill Road and El Camino Real funded by Stanford University and operated by the City. Constructed in 2005, the project included two artificial turf playing fields that drain to a below-grade infiltration facility (rock dry well) on the site. The site also contains Permeable Interlocking Concrete Pavers in the plaza area between the fields and a vegetated swale in the parking lot along El Camino Real. These GSI measures were among the first of their kind, installed before regulatory requirements mandated their use, and served as an example of green design to other communities (Figure 1.15).
SECTION 1: INTRODUCTION

Alma Street Infiltration Trench
To address flooding issues on Alma Street, this project involved installation of an infiltration trench along the west side of Alma, from Loma Verde to San Antonio (Figure 1.16). Roadway runoff drains through cuts in the asphalt curb into the trench and infiltrates into the soil. Completed in 2008, this is the City’s first GSI project in a street right-of-way.

Southgate Neighborhood Green Street
The Southgate Neighborhood is a single-family residential neighborhood, which was designed in the 1920s to have a storm drainage pattern based on gutter flows, and thus, with no storm drain system infrastructure. Over time, drainage problems within the neighborhood resulted in extended stormwater ponding. The City decided to retrofit the neighborhood to improve surface drainage and incorporate green street elements to improve water quality. The treatment measures include 16 bioretention areas, pervious pavement crosswalks, and a pervious pavement “paseo” (pedestrian walkway connecting two streets). The bioretention areas were incorporated into the street right-of-way and existing parkway strips (vegetated areas between the sidewalks and the streets) (Figure 1.17). Selected crosswalks were reconstructed using pervious pavement that intercept and infiltrate storm runoff (Figure 1.17). The project was completed in 2014. It was constructed using extra Rebate Program funds that had accumulated over several years, along with other funding sources.

Mitchell Park Community Center
The new Mitchell Park Library & Community Center on Middlefield Road includes a two-story, 41,000 square
foot library building and a 15,000 square foot single-story community center and court yard. The project includes approximately 11,000 square feet of green roof, a living green wall, bioretention areas, pervious paving in the parking area, and rainwater harvesting (Figure 1.18). The project was completed in 2014, and the building received a Leadership in Energy and Environmental Design (LEED) Platinum certification. The project was funded by a bond measure (Measure N), passed in November 2008 by City of Palo Alto voters.

Rinconada Library

The rehabilitation of the Rinconada Library in 2014 preserved the historical character of the original 1958 Edward Durell Stone building, while adding a new program room and group study rooms to expand and enhance the facility’s functionality. Special consideration was taken to preserve existing trees and not disturb existing site features. The project provided LID treatment using biotreatment areas that treat both on-site stormwater runoff (Figure 1.19) and groundwater pumped from underneath both the Library and the Art Center structures. The project was funded by a bond measure (Measure N), passed in November 2008 by City of Palo Alto voters.

Kellogg Avenue and Middlefield Road Intersection Improvements

Middlefield Road at Kellogg Avenue is a busy street with frequent pedestrian crossings to access Walter Hays Elementary School, the Junior Museum and Zoo, and Lucie Stern Community Center. To improve pedestrian access at this intersection, curb bulb-outs at the ends of Kellogg Avenue and curb extensions on Middlefield Road...
were installed in 2018 to reduce the pedestrian crossing distance and increase pedestrian visibility to drivers. Four bioretention areas were constructed within the curb bulb-outs and extensions (Figure 1.20).

Charleston/Arastradero Corridor Project
The 2.3-mile Charleston/Arastradero Corridor is a residential-arterial road that is undergoing major modifications to reduce traffic speeds, provide safer conditions for pedestrians, bicyclists, and motorists, and beautify the streetscape. The project includes the installation of landscaped medians, curb extensions/bulb-outs, enhanced bicycle and pedestrian improvements, and traffic signal modifications. Five bioretention facilities will be integrated into the traffic calming features. The expected completion date is 2020.

GSI Projects Constructed in Partnership with the City
Grassroots Ecology, a local non-profit organization, recently completed a number of GSI and native plant demonstration projects within the City, using grants from the Santa Clara Valley Water District (Valley Water) and partnerships with the City and the AmeriCorps Watershed Stewardship Program. These projects include:

- **Elizabeth F. Gamble Garden**, 1431 Waverly St. – In 2018, a rain garden (bioretention facility) with native plants was constructed to capture runoff from the parking lot while providing habitat for birds and insects. A 260-gallon rainwater storage cistern collects runoff from the roof of the event center and drains to the rain garden facility. A 55-gallon rain barrel was also installed to collect roof runoff for irrigation.

- **Hoover Park**, 2901 Cowper St. – In 2017, part of the park’s lawn area was replaced with a native rain garden that provides habitat for birds and insects while keeping pollutants from entering the storm drain. This site demonstrates the use of a 200-gallon water harvesting system to capture rainwater off the roof of the public bathroom and drip-irrigate the stone-lined garden.

- **Peninsula Conservation Center**, 3921 E. Bayshore Rd. – In 2017, non-native Indian Hawthorn shrubs were replaced with a native rain garden that slows and sinks rainwater while providing habitat for birds and insects. This site showcases a 500-gallon tank that captures rainwater off the roof and feeds it into the stone-lined garden.
SECTION 1: INTRODUCTION

1.4 REGULATORY CONTEXT

1.4.1 FEDERAL AND STATE REGULATORY DRIVERS

The U.S. Environmental Protection Agency (EPA) has authority under the Clean Water Act to promulgate and enforce stormwater-related regulations. For the State of California, EPA has delegated the regulatory authority to the State Water Resources Control Board (State Water Board), which in turn, has delegated authority to the San Francisco Bay Regional Water Quality Control Board (Regional Water Board) to issue National Pollutant Discharge Elimination System (NPDES) permits in the San Francisco Bay Region. Stormwater NPDES permits allow stormwater discharges from municipal separate storm sewer systems (or storm drain systems) to local creeks, the Bay, and other water bodies as long as they do not adversely affect the beneficial uses of or exceed any applicable water quality standards for those waters.

Since the early 2000’s, the EPA has recognized and promoted the benefits of using GSI in protecting drinking water supplies and public health, mitigating overflows from combined and separate storm sewers, and reducing stormwater pollution from storm drain systems (like those in the City of Palo Alto). It has also

Other GSI Examples

The City continues to look for opportunities to include GSI measures in public projects where feasible. For example, the City installed pervious pavement at the San Francisquito and Matadero Pump Stations, as well as in the El Camino Park parking lot. In addition, the City is also planning or constructing a number of capital improvement projects (CIPs) that are required to install GSI measures per regional regulations (see Section 1.4), including replacement of Fire Station #3 on Embarcadero Road, the new Public Safety Building on Sherman Avenue, the new California Avenue Parking Garage, and the Highway 101 Pedestrian/Bicycle Bridge Project.

FIGURE 1.19: Rinconada Library: infiltration trench (left) and bioretention area

Source: EOA, Inc.

FIGURE 1.20: Kellogg Ave. & Middlefield Rd. three-way intersection: stormwater curb extension

Source: EOA, Inc.
encouraged the use of GSI by municipal agencies as a prominent component of their municipal stormwater programs. The State Water Board and its Regional Water Boards followed suit in recognizing not only the water quality benefits of GSI, but also the opportunity to augment local water supplies in response to the impacts of drought and climate change. Moreover, the 2014 California Water Action Plan called for multiple benefit stormwater management solutions and more efficient permitting programs. These Federal and State initiatives have influenced approaches in Bay Area municipal stormwater permits, as described in Section 1.4.2.

1.4.2 REGIONAL REGULATORY DRIVER: MUNICIPAL REGIONAL STORMWATER PERMIT
The City is subject to the requirements of the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) Permit (MRP) for Phase I municipalities and agencies in the Bay Area (Order R2-2015-0049), which became effective on January 1, 2016. The MRP applies to 76 large, medium and small municipalities (counties, cities, and towns) and flood control agencies that discharge stormwater to the Bay, collectively referred to as Permittees, as referenced in Figure 3.2.

Over the last 13 years, under the current MRP and previous permits, new development and redevelopment projects on private and public property that exceed certain size thresholds (known as “Regulated Projects”) have been required to mitigate impacts on water quality by incorporating site design, pollutant source control, stormwater treatment and flow control measures (also known as GSI) as appropriate. Regulated Projects include new development and redevelopment for certain project types that create and/or replace at least 5,000 square feet of impervious surface (e.g. auto service facilities, gas stations, restaurants, and uncovered parking lots), as well as new development and redevelopment that creates and/or replaces at least 10,000 square feet of impervious surfaces for certain projects. LID measures, such as disconnecting downspouts and diverting site runoff to landscaping, have been required on most Regulated Projects since December 2011. Construction of new roads is covered by these requirements, but projects related to existing roads and adjoining sidewalks and bike lanes are not regulated unless they include creation of an additional travel lane.

1.4.3 REGULATORY REQUIREMENT ADDRESSED THROUGH THE GSI PLAN
Provision C.3.j of the MRP requires the City to develop and implement a long-term GSI Plan for the inclusion of measures into storm drain infrastructure on public and private lands, including streets, roads, storm drains, parking lots, building roofs, and other elements. Per MRP requirements, the GSI Plan must be adopted by City Council by September 30, 2019. As previously stated, this phase of the Plan identifies how the City will move forward with integrating GSI into its own property and right-of-way, with the next phase focused on private project opportunities.

As part of the GSI planning process, Provision C.3.j.i.(1) required Permittees to adopt a Green (Stormwater) Infrastructure Plan Framework (Framework) by June 30, 2017 and submit it to the Water Board by September 30, 2017. In compliance with this provision, the City completed a GSI Framework, which was signed by the City Manager and included tasks and timeframes that would be completed as part of the required elements of the GSI Plan.

While Provision C.3.j of the MRP contains the GSI program planning and analysis requirements, other provisions (C.11 and C.12) establish a linkage between public and private GSI features and required reductions in pollutant discharges. Permittees in Santa Clara County (County), collectively, must implement GSI on public and private property to achieve specified pollutant load reduction goals by the years 2020, 2030, and 2040. These efforts will be integrated and coordinated county-wide for the most effective and resource-efficient program. As an indication as to whether these load reductions will be met, Permittees must include in their GSI Plans estimated “targets” for the amounts of impervious surface to be “retrofitted” as part of public and private projects (i.e., redeveloped or changed such that runoff from those surfaces will be captured in a stormwater treatment system or GSI measure) over the same timeframes (2020, 2030, and 2040); these estimated targets are outlined in Section 5.0.

A key part of the GSI definition in the MRP is the inclusion of GSI measures at both private and public property locations. This has been done in order to plan, analyze, implement and credit GSI for pollutant load reductions on a watershed scale, as well as recognize all GSI accomplishments within a municipality. Thus, the next phase of the GSI Plan may also establish opportunities to include GSI measures at private properties or in conjunction with private development, in order to assist with meeting the target load reductions on a county-wide level as well as implement GSI on a larger scale.
2.1 BACKGROUND AND LAND USE

Incorporated in 1894 as the town to support Stanford University, the City of Palo Alto is located in northern Santa Clara County, in the mid-peninsula region of the Bay Area. The City is located between forested foothills of the Santa Cruz Mountains to the southwest, and the Bay and adjacent Baylands to the northeast. The City (Figure 2.1) can be described as a suburban residential community with a vibrant economy in the high technology and medical sectors. The commercial and mixed-use areas serve as the focal points for, and are within walking distance of, residential neighborhoods. They also include important civic buildings, schools, and parks for community use. The employment districts are relatively large districts with job-generating office, technology, and light industrial uses.

The City’s open space preserves in the southern foothills and the Baylands make up a large portion of land within the City limit. While the City has a total land area of 25.79 square miles, approximately 59 percent of this area is protected open space. Development in the City is concentrated within the Urban Service Area, which has a land area of 13.95 square miles. The main land use areas in the City’s urban area can be categorized as residential neighborhoods, commercial centers and employment districts. There are about 35 residential neighborhoods in the City, which include single-family homes and multi-family structures. Of the estimated 28,500 housing units in the City, approximately 62 percent are single-family residential units.

2.2 SURFACE WATER BODIES AND NATURAL RESOURCES

The City is located within three main watersheds: San Francisquito, Matadero, and Adobe Creeks. All of the creeks flow to the Bay and enter the Bay at the City’s Baylands.

- San Francisquito Creek forms the northern border of the City adjacent to Menlo Park and East Palo Alto. The main tributaries to San Francisquito Creek are Corte Madera Creek (in Portola Valley and Stanford), Bear Creek (in Woodside and Menlo Park), and Los Trancos Creek (in Portola Valley and Stanford).
- The Matadero Creek watershed includes Deer Creek, Arastradero Creek, the Stanford Channel, and Mayfield Slough. Except for the Stanford Channel, the watershed consists of natural channels upstream of El Camino Real. Downstream of El Camino Real to the Flood Control Basin, all of the creeks are engineered, concrete channels adjacent to or in the backyards of residences.
- The Adobe Creek watershed drains south Palo Alto, Los Altos Hills, and Los Altos. Barron Creek is part of this watershed; it flows through south Palo Alto to meet Adobe Creek just before it enters the the Flood Control Basin. Both Adobe Creek and Barron Creek are mostly natural channels upstream of El Camino Real and are in engineered, concrete channels downstream of El Camino Real.

Surface water bodies in the City of Palo Alto include ponds, lakes, creeks, and the Bay. Ponds and lakes include Boronda Lake in Foothills Park, and Arastradero Lake and John Sobey Pond in the Pearson-Arastradero Preserve. A freshwater marsh with open water habitat also occurs in the Emily Renzel Marsh portion of the Baylands Preserve.

The City is one of 3,409 cities in the United States that holds the Arbor Day Foundation’s “Tree City USA” status due to its dense urban canopy and more than 300 different species throughout streets, parks, and other landscaped areas. Protecting, maintaining and enhancing the urban forest, as called for in the City’s 2015 Urban Forest Master Plan, is a high priority for the City. In addition, the City encompasses a variety of natural plant communities within a densely built environment. The Baylands and undeveloped land in the western hills contain undisturbed plant communities and habitat for a variety of species. The following natural plant communities exist within the City’s boundaries: (1) Annual Grassland (various locations); (2) Coastal Scrub (foothills); (3) Chamise Chaparral (foothills); (4) Forests (Redwood, Montane Hardwood-Conifer, Montane Hardwood in foothills); (5) Oak Woodland (foothills); and (6) Wetlands (Baylands).

2.3 GROUNDWATER RESOURCES

Although the City’s major water supplies are provided by the San Francisco Public Utilities Commission (SFPUC), the City maintains eight groundwater wells as an emergency water supply source and as a potential supply source for use during a prolonged drought. The groundwater quality of the City’s wells is considered fair
FIGURE 2.1: Land Use throughout the City (City of Palo Alto, 2014)
to good quality, but less desirable in comparison to SFPUC’s supplies. Except for maintenance purposes, the City has not operated these wells since 1991.

The City is situated next to the southwest shoreline of the Bay, and shallow groundwater levels are highly influenced by its tides. The City has a shallow water table throughout much of the urban area with depth to groundwater levels from 5.0 to 20.0 feet below grade in most of the area east of El Camino Real. In addition, five main contaminated groundwater plumes as well as smaller ones are known to exist, as a result of historical land uses and chemical management practices (see Figure 2.2). Depth to groundwater and the presence of contaminated plumes are two factors that will influence the selection of locations and design of GSI measures and were important considerations when prioritizing potential GSI project areas in the City.

2.4 TRANSPORTATION

Regional vehicular access to Palo Alto is provided by Interstate 280 passing through the western part of the City, Highway 101 passing along the eastern perimeter of the City, and State Route 82 (El Camino Real) which passes through the heart of the City.

The Palo Alto Transit Center is a regional transit hub with connections to Caltrain, Santa Clara Valley Transportation Authority (VTA), San Mateo County Transit District, and Alameda-Contra Costa Transit District. Additionally, the City operates a free, public shuttle service, and Stanford University’s

FIGURE 2.2: Depth to Groundwater and Contamination Plume Approximate Limits

2The California Department of Finance estimates the current population of the City to be 69,721 as of January 1, 2018.
Marguerite Shuttle provides free public bus service to destinations on the Stanford campus and at the Stanford Shopping Center.

The City has approximately 65 miles of existing bikeways and adopted a Bicycle and Pedestrian Transportation Plan in July 2012. In addition to bikeways operated and maintained by the City, regional bikeways operated by VTA and San Mateo County provide connections to points throughout Palo Alto and beyond. The focus on bicycle and pedestrian safety throughout the City melds well with the goals of this GSI Plan.

2.5 POPULATION AND GROWTH FORECASTS

According to the 2010 Census, the City has a population of 64,403. The City experienced relatively stable and slow population growth from 1970 to 2000 but has been growing significantly faster since 2000, a trend that is projected to continue. Between 2000 and 2013, the City of Palo Alto was one of the fastest growing cities in the County, with an overall 13 percent increase (Comprehensive Plan, 2017). Estimates of future growth indicate a moderate and steady increase in population over the next 20 years. By the year 2035, the Association of Bay Area Governments (ABAG) estimates that the population of Palo Alto will reach 84,000.

The City completed an update of its Comprehensive Plan in November 2017, and growth/development forecasts were developed as part of this process. These data were used in development of estimates of impervious surface retrofit targets for 2020, 2030, and 2040, as discussed in Section 5.0.
PAGE INTENTIONALLY LEFT BLANK
3.1 PLAN DEVELOPMENT OVERSIGHT AND STAFF INVOLVEMENT

The City’s Stormwater Program Team, housed in the Watershed Protection Group (Watershed Protection) of the Public Works Department’s Environmental Services Division, managed the development of the GSI Plan, with support from a consultant team. Collaboration during Plan development involved creating a staff-level GSI Workgroup, made up of staff from various departments, including Public Works Engineering, Planning & Community Environment, Development, Utilities, and Community Services, that served as stakeholders of this Plan in some fashion.

Meetings were held periodically with the Workgroup, with small staff meetings held in-between these periods to discuss pertinent topics in-depth. These meetings were facilitated by Watershed Protection staff. In addition, Watershed Protection staff attended various meetings to keep abreast of City projects that may be coordinated with the GSI Plan; developed relationships with project managers; gave presentations at Department staff meetings; and provided updates via email communications. Information obtained was imperative in helping to provide Plan direction, prioritize projects, outline City processes and obtain staff support across Departments. Figure 3.1 is a word cloud depicting the various Departments that collaborated together throughout the development of this Plan.

FIGURE 3.1: City Staff Meetings for GSI Plan Development

3.2 PUBLIC PARTICIPATION

There were several opportunities for public participation in the development of the GSI Plan. Updates on the development of the GSI Plan were presented at meetings with the Stormwater Management Oversight Committee (SWMOC), which was formed to review the expenditures of the proposed City’s Stormwater Management Fee (SWMF). During the development of the Plan, six SWMOC, publicly-noticed meetings were held, where an update was provided.

Furthermore, Watershed Protection staff presented at the Parks and Recreation Commission in November 2018 and again in January 2019, as well as the Planning and Transportation Commission in January 2019 to provide background on the Plan and inform the Commissions of how the Plan aligns with the Commissions’ respective goals. The GSI Plan was accepted by Council on May 13, 2019. Commission and City Council meetings are also publicly-noticed. In addition, a public meeting was held on March 26, 2019 to share the Plan with the public and obtain feedback before finalizing it.
Finally, notification of both the 85 percent and 100 percent Draft GSI Plan versions were sent out to key stakeholders, including but not limited to, Grassroots Ecology, Peninsula Watershed Forum, Save Palo Alto Groundwater, and neighborhood groups and local organizations. Moreover, a City webpage (www.cityofpaloalto.org/gsi) was established in July 2018 to provide information to the public and will be periodically updated. The drafts of the Plan were posted on the website, and the Final Plan will be posted here as well once accepted. Additional outreach efforts are described in Section 10.0.

3.3 SCVURPPP GUIDANCE AND INTER-AGENCY COORDINATION

The City is a member of the Santa Clara Valley Urban Runoff Pollution Prevention Program (SCVURPPP), an association of thirteen cities and towns in the Santa Clara Valley, the County, and Valley Water that collaborate on stormwater regulatory activities and compliance. The City’s Plan was developed with support from SCVURPPP, which included technical guidance, templates, and completion of certain GSI Plan elements at the county-wide level. SCVURPPP guidance and products are discussed in more detail in relevant Sections of the Plan.

The City worked with other SCVURPPP member agencies to review, approve and fund GSI-related work plans and provide input on SCVURPPP technical guidance and products. City representatives regularly met with other agencies as part of SCVURPPP Management Committee meetings and C.3 Provision Oversight Ad Hoc Task Group meetings to discuss work products, issues and lessons learned related to Plan development and implementation.

The City, via SCVURPPP, also coordinated with the Bay Area Stormwater Management Agencies Association (BASMAA) on regional GSI guidance and received feedback through BASMAA from MRP regulators on GSI expectations and approaches. BASMAA members include other county-wide stormwater programs in Alameda, Contra Costa, and San Mateo Counties, and area-wide programs in the Vallejo and Fairfield-Suisun portions of Solano County, whose participating municipalities are permittees under the MRP. Figure 3.2 illustrates this inter-agency coordination.

![Figure 3.2: Inter-Agency Coordination](image)
SECTION 4

PROJECT IDENTIFICATION AND PRIORITIZATION MECHANISM
4.1 INTRODUCTION

To meet the requirements of the MRP, the City’s GSI Plan must describe the mechanism by which the City will identify, prioritize, and map areas for potential and planned projects that incorporate GSI components in different drainage areas within the City. The mechanism must include the criteria for prioritization and outputs that can be incorporated into the City’s long-term planning and capital improvement processes. For the purposes of this Plan, Watershed Protection staff conducted a thorough assessment and an initial prioritization of potential GSI project locations on City-owned property. Locations within the right-of-way, areas such as streets and sidewalks, were prioritized as part of a county-wide effort; however, further prioritization of the City’s rights-of-way will be conducted in the future.

Large private property owners in the City, such as Stanford and the Palo Alto Unified School District, are not required to create their own GSI Plans. Because the City does not have jurisdiction over these properties, they were not included in the prioritization process. However, the City will seek collaboration opportunities with both parties to integrate GSI throughout their jurisdictions.

The prioritization process for City-owned properties involved two major steps. The quantitative prioritization mechanism used for the City’s GSI Plan was based on the process used in the Santa Clara Basin Stormwater Resource Plan (SWRP). The SWRP (2018) was developed by SCVURPPP, in collaboration with Valley Water, on behalf of SCVURPPP member agencies. It establishes a county-wide, watershed-based planning and implementation guide for stormwater and dry weather runoff capture and use projects on publicly-owned land and rights-of-way.

The SWRP produced a list of prioritized project locations eligible for future State implementation grant funds as the first step of the prioritization process.

The second step in the prioritization process involved overlaying the City-specific criteria, planning areas, upcoming City projects and local knowledge onto the county-wide results to align the results of the SWRP process with the City’s priorities. The result is a list of proposed project locations for City-owned properties. The steps are described in detail below.

4.2 STEP ONE: SWRP PRIORITIZATION SUMMARY

Building on existing documents that describe the characteristics and water quality and quantity issues within the Santa Clara Basin (i.e., the portion of the County that drains to the Bay), the SWRP identified and prioritized multi-benefit GSI project locations throughout the Basin. A metrics-based approach was used for quantifying project location benefits, such as volume of stormwater infiltrated and/or treated and quantity of pollutants removed. The metrics-based analysis was conducted using hydrologic/hydraulic and water quality models coupled with (map-based software) Geographic Information System (GIS) resources and other tools. The products of these analyses were a map of opportunity areas for GSI project locations throughout the Basin, an initial prioritized list of potential project locations, a limited list of project concepts across the Basin, and strategies for funding these and future projects. Table 4.1 provides a count of the identified projects throughout the County as well as the City.

The process began by identifying and screening public parcels and public rights-of-way. GSI project location opportunities were categorized as LID, regional, or green streets projects. LID projects are GSI facilities that are built on a parcel to treat runoff generated from impervious surfaces on that parcel. Regional projects are larger-scale GSI projects that are intended to collect and treat runoff from a large drainage area, including runoff from on-site and off-site areas. LID project location opportunities were defined as GSI project opportunities identified on parcels with an area less than or equal to 0.25 acres, whereas regional GSI opportunities were identified on parcels with an area greater than 0.25 acres. Green street project location opportunities were defined as GSI project retrofit opportunities in the public right-of-way along existing street segments. The screening and prioritization metrics for these projects are described below.

4.2.1 PARCEL-BASED PROJECT OPPORTUNITIES

The screening criteria for LID and regional project locations were ownership (focusing only on public parcels), land use, and site slope. The screened parcels were then prioritized based on physical characteristics, proximity to flood-prone areas, proximity to potential pollutant sources, whether they were in a priority development area, whether they were within a defined...
proximity to a planned project, and whether the project was expected to have other benefits such as augmenting water supply, providing water quality source control, re-establishing natural hydrology, creating or enhancing habitat, and enhancing the community. Prioritization metrics for LID project scoring is available in the SWRP.

Key metrics for regional project locations were the size of the parcel, size of the drainage area, and proximity to a storm drain (from which stormwater and dry weather flows could be diverted). The result of parcel prioritization was a list of potential project locations based on this criteria. This list was reviewed and updated by the City as part of Step Two (Section 4.3).

4.2.2 GREEN STREET PROJECT OPPORTUNITIES

The screening criteria for green streets projects in the public right-of-way were ownership, surface material, slope, and speed limit. The screened public right-of-way street segments were then prioritized based on physical characteristics, proximity to storm drains, proximity to flood-prone areas, proximity to potential pollutant sources, whether they were in a priority development area, whether they were in proximity to a planned project, and whether the project was expected to have other benefits (similar to LID and regional projects).

The initial prioritization process resulted in too many potential green streets project opportunities within the Santa Clara Basin. In order to identify the optimal locations for green street projects, the SWRP identified and mapped those street segments in each municipality’s jurisdiction with scores in the top 10 percent of ranked green street opportunities. A limited number of street segments from the top 10 percent of potential locations were reviewed by the City (Section 4.3).

4.3 STEP TWO: CITY PRIORITIZATION SUMMARY FOR CITY-OWNED PARCELS

Watershed Protection staff followed a comprehensive process to further prioritize parcel-based project locations and certain Department projects that are not parcel-based, such as the Storm Drain Master Plan projects, beyond the SWRP regional level, so that the project locations met specific City needs. Projects from the Utilities Department were not prioritized at this time due to various utility conflicts that will be considered in Section 7.0; however, maps of the Utilities projects that are currently outlined in the Fiscal Year 2019 Adopted Capital Budget document are included in Appendices Q – T. While streets were prioritized in the SWRP, staff did not further prioritize street project locations with additional City-specific criteria. However, staff did review the streets prioritized as “high” by the SWRP; staff will further review streets surrounding key development areas and parcel-based project locations identified as “high” priority in the future.

Below is an outline of the steps taken by Watershed Protection staff to conduct the City-specific prioritization for project location opportunities. This Section provides additional detail to each of these steps.

4.3.1 OVERVIEW OF CITY PRIORITIZATION STEPS

A. Updated SWRP proposed parcel (regional and LID) list.

B. Developed prioritization criteria based on SWRP criteria, data review and staff recommendations.

C. Determined which criterion should result in a higher prioritization based on the importance of project location characteristics. Then created

<table>
<thead>
<tr>
<th>Project Type</th>
<th># Public Project Locations</th>
<th># City-owned Project Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>LID</td>
<td>152</td>
<td>84</td>
</tr>
<tr>
<td>Green Street</td>
<td>2758</td>
<td>2758</td>
</tr>
<tr>
<td>90th Percentile Green Street</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Total</td>
<td>3280</td>
<td>3162</td>
</tr>
</tbody>
</table>
categories for each criterion to match those characteristics.

D. Identified a value for criteria categories, with high-priority characteristics receiving a larger value than low-priority characteristics.

E. Compared each project location against the criteria categories and assigned the appropriate value for each criterion to the project location based on its characteristics.

F. Totaled the values for each project location.

G. Calculated the 85th percentile to designate the “high priority” project locations.

H. Calculated the 25th percentile to designate the “low priority” project locations.

I. The remaining projects were designated as “medium priority” project locations.

Part A: Updated SWRP Proposed Parcel (Regional and LID) List

City staff adapted the parcel project location list from the SWRP effort described in Step One to create a final (draft) comprehensive City-specific project location list. As required by the MRP, the City has maintained a list of planned and constructed public projects that included GSI for the last three fiscal years (15-16, 16-17, and 17-18) and will continue to do so until the end of the permit term (approximately January 2020). Table 4.4 includes the currently planned projects that will include GSI. City staff reviewed the MRP list and ensured all projects were included in the overall list.

All projects in the Fiscal Year 2018 Adopted Capital Budget document were assessed for GSI project location potential. If a project was determined to have potential, even that of ‘low,’ it was added to the existing project list. In addition, other sources such as the Bike and Pedestrian Transportation Plan, the Storm Drain Master Plan and all City-owned properties were reviewed to create a comprehensive list.

Once these potential project locations were compiled from various sources, staff analyzed these project locations by viewing locations on Google Earth, mapping projects in GIS, and by discussing projects with other City staff. Mapping these potential GSI project locations allowed staff to view their proximity to planned GSI projects, key development areas¹ as well as other pertinent criteria.

Part B: Developed Project Prioritization Criteria

Next, staff developed the list of criteria below to be analyzed for each potential project location from the updated project location list (Part A). This criteria was a combination of the SWRP prioritization method, as well as new criteria that was deemed significant throughout GSI Workgroup meetings and discussions with City staff, as outlined below in Table 4.2. All project locations were compared against this criteria to ultimately produce a prioritization of high, medium, and low priority project locations.

The following section outlines each criterion (bulleted) and provides a description of the information deemed important for that criterion. This information led to choosing the categories and allocated values defined in Table 4.3 (for those with the green categories listed below).

• Project Status

Planned CIPs/bikeway projects received a higher priority than non-planned projects according to the FY 2018 Adopted Capital Budget document. Since the CIP document identifies projects that are incorporated within the City’s long-term budget, they received a higher priority than projects that do not yet have allocated funding.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Status</td>
<td>Planned in FY18 Adopted Capital Budget</td>
</tr>
<tr>
<td></td>
<td>Not planned in FY18 Adopted Capital Budget</td>
</tr>
</tbody>
</table>

• Proximity to Proposed Bikeway Projects

Project locations that are adjacent to a proposed bikeway project according to the City’s Bicycle and Pedestrian Transportation Plan (2012) received a higher priority than project locations that are not adjacent to any proposed bikeway projects. Since the Bicycle and Pedestrian Transportation Plan identifies projects with a higher likelihood of being implemented, there is a greater opportunity for coordinating projects with GSI measures on-site. Refer to Appendix A for a map of these proposed bikeway projects.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity to Proposed Bikeway Projects</td>
<td>Adjacent to a proposed bikeway project</td>
</tr>
<tr>
<td></td>
<td>Not adjacent to a proposed bikeway project</td>
</tr>
</tbody>
</table>

¹Key development areas are locations throughout the City that provide opportunities for comprehensive planning between mixed-use buildings, housing, transportation, and GSI. See Appendix C for more information.
• **Parcel Area**
 Parcels that are greater than or equal to 0.25 acres received a higher priority than parcels that are less than 0.25 acres. Parcels that are at least 0.25 acres provide an opportunity for implementing a stormwater runoff capture or treatment project that can treat a larger drainage area, whereas parcels that are less than 0.25 acres are more limited to on-site projects.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel Area</td>
<td>> 0.25 acres</td>
</tr>
<tr>
<td></td>
<td>< 0.25 acres</td>
</tr>
</tbody>
</table>

• **Land Use (Current)**
 Parcels with a current land use dedicated to parking and transportation received the highest priority due to the large amounts of impervious cover associated with these land uses.

 Parcels with a current land use dedicated to commercial use, public parks, office parks, SOFA I/II-designations[^2], and major institutions received the next highest priority. Parcels with commercial use, office parks, and major institutions typically include larger amounts of impervious surface on-site. SOFA I/II areas may not have as high amounts of impervious areas as parking lots; however, they can be ideal candidates for regional GSI projects that align with other community benefits. Public parks can be ideal candidates for larger GSI projects, such as stormwater retention on-site, due to the larger amounts of pervious surface accessible in parks.

 Parcels with a land use dedicated to residential use, open space, public conservation land, or schools received the lowest priority. The MRP does not provide the City jurisdiction over the Palo Alto Unified Public School District (PAUSD), and as such, PAUSD is not required to comply with the GSI requirements under Provision C.3 of the MRP. However, voluntary or partnership GSI project opportunities exist at many PAUSD properties.

 The open space and public conservation land areas within the City are considered a lower priority since most have a parcel slope greater than fifteen percent, which presents additional design challenges.

Further, these areas already provide, by design, natural processes that result in a reduction in stormwater runoff and pollutants. Residential spaces are also included in this lower priority category, since residential properties typically include smaller parcel areas with smaller drainage areas and contribute less pollutants than higher priority land uses.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use (Current)</td>
<td>Parking lots and transportation</td>
</tr>
<tr>
<td></td>
<td>Commercial, public parks, office parks, SOFA I/II, and major institutions</td>
</tr>
<tr>
<td></td>
<td>Residential, open space, public conservation land, and schools</td>
</tr>
</tbody>
</table>

• **Land Use (Historic)**
 Project locations that had an “industrial” land use designation in 1980 or project locations that were adjacent to a parcel that had an “industrial” land use designation in 1980 received a higher priority than non-industrial land uses from this 1980 time period, as past industrial uses have been linked to various pollutants that caused significant impacts to the environment. These parcels are identified as “old industrial” in Appendix B. Parcels identified as “old urban” in Appendix C include parcels that depict urbanized areas in 1980. Parcels identified as “open space” in Appendix B include undeveloped land. Since pollutant sampling data is not available on a widespread scale throughout the City, parcels with an industrial land use in 1980 serve as a proxy for potential pollutant indicators. Implementing GSI measures can assist with filtering out and treating any legacy pollutants that may have resulted from past industrial uses.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use (Current)</td>
<td>"Industrial" in 1980</td>
</tr>
<tr>
<td></td>
<td>Not "industrial" in 1980</td>
</tr>
</tbody>
</table>

• **Key Development Areas**
 Projects that are located within one of the key development areas throughout the City—California Ave. Priority Development Area,
Downtown Business Improvement District, North Ventura Coordinated Area, and SOFA I/II areas—received a higher priority than projects located outside one of these areas. Refer to Appendix C for an outline of these areas.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Development Areas</td>
<td>Located within key development area</td>
</tr>
<tr>
<td></td>
<td>Located outside of key development area</td>
</tr>
</tbody>
</table>

Localized Ponding

City staff identified areas of localized ponding during various GSI Workgroup and small meetings. Projects that are located within an area identified to have localized ponding following rain events received a higher priority than projects located in an area without ponding. The former also tend to be in areas with a higher water table. Refer to Appendix D for a map of these areas.

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized Ponding</td>
<td>Located within areas of localized ponding</td>
</tr>
<tr>
<td></td>
<td>Located outside of areas of localized ponding</td>
</tr>
</tbody>
</table>

Flood Zone Designation

Project locations that are outside of a Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA), including Zones D and X, received a higher priority than areas located within an SFHA. Project locations within an SFHA that are further inland from the Bay, including Zones A, AO, and AH, received the second highest priority. Project locations that are closer to the Bay are more likely to have clay soils, which do not allow for infiltration or detention. As a result, project locations closer to the Bay received lower priority. Refer to Appendix D for a map of these areas.

- Zone A is a high risk flood area subject to inundation by the 1 percent annual chance flood event generally determined using approximate methodologies (i.e. no depths or base flood elevations are shown within these zones).
- Zone AO is a high risk flood area subject to inundation by 1 percent annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between one and three feet.
- Zone AH is a high risk flood area subject to inundation by 1 percent annual chance shallow flooding (usually areas of ponding) where average depths are between one and three feet.
- Zone VE is a high risk flood area subject to inundation by the 1 percent annual chance flood event with additional hazards due to storm-induced velocity wave action.
- Zone AE is a high risk flood area subject to inundation by the 1 percent annual chance flood event determined by detailed methods (i.e. base flood elevations are provided for these areas).

<table>
<thead>
<tr>
<th>Prioritization Criterion</th>
<th>Criterion Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Zone Designation</td>
<td>FEMA-designated Zones D and X</td>
</tr>
<tr>
<td></td>
<td>FEMA-designated Zones A, AO, and AH</td>
</tr>
<tr>
<td></td>
<td>FEMA-designated Zones VE and AE</td>
</tr>
</tbody>
</table>

Trash Generation Designation

The City has four trash generation designations, including very high, high, moderate, and low. The MRP defines “very high” areas as areas that generate greater than 50 gallons/acre/year of trash; “high” areas as areas that generate 10-50 gallons/acre/year of trash; “moderate” areas as areas that generate 5-10 gallons/acre/year of trash; and “low” areas as areas that generate less than 5 gallons/acre/year of trash. Refer to Appendix E for a map of these areas.

Project locations that are adjacent to parcels with a “very high” trash generation designation received the highest priority; project locations that are adjacent to parcels with a “low” trash generation designation received the lowest priority. Since certain GSI measures can act as trash capture devices if designed and maintained properly, prioritizing GSI in higher trash generation areas may assist with lowering the trash generation designation.
Prioritization Criterion: Proximity to Groundwater Plume Approximate Limits

Projects that are located at least 500 feet outside of a groundwater plume approximate limits received a higher priority than projects located on or within 500 feet of a groundwater plume approximate limits. Projects located within 500 feet of a groundwater plume approximate limits received lower priority, since project locations within these areas require additional design considerations for any proposed GSI measures in order to minimize impacts to the plume. Refer to Appendix G for a map of these areas.

Prioritization Criterion: Co-location with Existing City-owned GSI Measures

Projects located within 500 feet of an existing public GSI measure received a higher priority than projects located outside of a 500-foot buffer surrounding GSI measures based on the potential for increased stormwater retention in a connected area. Refer to Appendix H for a map of these City-owned GSI measures.

Prioritization Criterion: Groundwater Recharge Area

Projects located within a groundwater recharge area and located at least 500 feet outside of a groundwater plume approximate limits received a higher priority than projects that did not meet both of these criteria due to the fact that the Valley Water's Groundwater Management Plan recognizes that stormwater management opportunities may act as a source of groundwater recharge.

While many of these City-specific criteria overlapped with the SWRP prioritization criteria, there were several SWRP metrics that were not included within the City prioritization due to the various reasons listed below:

- **Proximity to Geotracker Site**
 Staff utilized City-specific groundwater plume data in place of utilizing the SWRP Geotracker data. Although both the SWRP and City-specific groundwater plume data were based off of Geotracker data, the staff analysis was more restrictive by prioritizing project locations that were more than 500 feet outside of a groundwater plume approximate limits.

- **Proximity to PCB Interest Area**
 City staff utilized historic industrial land use data as a proxy for PCB indicators since PCBs sampling data is not available on a widespread scale throughout the City.

- **Distance from Storm Drain**
 The SWRP analysis used a county-wide data set of storm drains that are 24 inches or more in diameter, and prioritized regional project opportunities that are located close to those storm drains. However, it is possible to divert water to smaller-scale GSI projects from storm drain pipes that are smaller than 24 inches. Thus, the City staff did not utilize distance from a 24-inch storm drain as a prioritizing criterion.

- **Drainage Area Estimate and Drainage Area Slope**
 After reviewing the FY 2018 Adopted Capital Budget and other City plans, staff added several new projects to the prioritization list that were not initially included in the SWRP project list. Since these projects were added after the SWRP prioritization process, staff does not have drainage area data (including drainage area slope) to compare for all projects. To ensure consistency, the data was not used at all in the City’s process.

- **Hydrologic Soil Group**
 According to the SWRP initial project prioritization, approximately 94 percent of the soil throughout the City and the County for the identified project locations consists of Hydrologic Soil Group C/
Due to the lack of heterogeneity, staff did not utilize Hydrologic Soil Group as a prioritizing factor.

- **Imperviousness Percent**
 City staff considered using percent imperviousness as a criterion. Although data was not calculated for each parcel, general knowledge and mapping research were used to assess approximate imperviousness. Parcels with parking and transportation as a primary land use were prioritized as the highest priority based on the large percentage of impervious cover for these parcels.

- **Parcel Slope**
 City staff did not prioritize projects on parcels greater than fifteen percent due to the additional design challenges associated with these parcel slopes. Parcels with less than fifteen percent slope were not prioritized differently compared to one another since the exact parcel slope does not offer significant advantages as long as the slope is less than fifteen percent. However, staff may still consider project locations with slopes higher than fifteen percent if other site considerations are optimal. Refer to Appendix F for a map of parcel slope greater than 15 percent throughout the City.

- **Located in Disadvantaged Community**
 Per the Bay Area Integrated Regional Water Management Program, we do not have any information regarding disadvantaged communities in the City. As a result, staff did not consider this criterion in the City-specific prioritization.

Table 4.2: Table 4.2 GSI Project Location Prioritization Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>City-Specific</th>
<th>SWRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Status</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Proximity to Proposed Bikeway Projects</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parcel Area</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Land Use (Current)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Land Use (Historic)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Key Development Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized Ponding</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Flood Zone Designation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trash Generation Designation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Proximity to Groundwater Plume Approximate Limits</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Co-location with Existing City-owned GSI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Groundwater Recharge Area</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Proximity to Geotracker Site</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Proximity to PCB Interest Area</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Distance from Storm Drain</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Drainage Area Estimate and Drainage Area Slope</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hydrologic Soil Group</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Imperviousness Percent</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Drainage Area Estimate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parcel Slope</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Located in Disadvantaged Community</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Located in Community of Concern</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

9 Hydrologic soil groups are categorized based on their drainage properties, with Soil Group A representing the most well-drained soils and Soil Group D representing the least well-drained soils.
• Located in Community of Concern\(^5\)

None of the City projects identified in the SWRP were located in a Community of Concern. As a result, staff did not consider this criterion in the City-specific prioritization.

Parts C – E: Identified Prioritization Criteria Values

Once Watershed Protection staff determined the criteria and respective categories, staff allocated points per criteria category based on whether the parcel met the higher-prioritized category of each criterion, as described above. If the project location met the higher-prioritized category, the project location would be assigned the larger value. These values are outlined below in Table 4.3. Staff reviewed each project location and assigned the appropriate value based on the project location characteristics.

TABLE 4.3: PRIORITIZATION CRITERIA VALUES

<table>
<thead>
<tr>
<th>Prioritization Criteria</th>
<th>Criteria Category</th>
<th>Assigned Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Status</td>
<td>Planned in FY18 Adopted Capital Budget</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Not planned in FY18 Adopted Capital Budget</td>
<td>1</td>
</tr>
<tr>
<td>Proximity to Proposed Bikeway Projects</td>
<td>Adjacent to a proposed bikeway project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Not adjacent to a proposed bikeway project</td>
<td>1</td>
</tr>
<tr>
<td>Parcel Area</td>
<td>> 0.25 acres</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>< 0.25 acres</td>
<td>1</td>
</tr>
<tr>
<td>Land Use (Current)</td>
<td>Parking lots and transportation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Commercial, public parks, office parks, SOFA I/II, and major institutions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Residential, open space, public conservation land, and schools</td>
<td>1</td>
</tr>
<tr>
<td>Land Use (Historic)</td>
<td>"Industrial" in 1980</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Not "industrial" in 1980</td>
<td>1</td>
</tr>
<tr>
<td>Key Development Areas</td>
<td>Located within key development area</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Located outside of key development area</td>
<td>1</td>
</tr>
<tr>
<td>Localized Ponding</td>
<td>Located within areas of localized ponding</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Located outside of areas of localized ponding</td>
<td>1</td>
</tr>
<tr>
<td>Flood Zone Designation</td>
<td>FEMA-designated Zones D and X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>FEMA-designated Zones A, AO, and A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FEMA-designated Zones VE and AE</td>
<td>1</td>
</tr>
<tr>
<td>Trash Generation Designation</td>
<td>Very high</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>Proximity to Groundwater Plume Approximate Limits</td>
<td>Located at least 500 feet outside of a groundwater plume approximate limits</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Located within a groundwater plume approximate limits</td>
<td>1</td>
</tr>
<tr>
<td>Co-location with Existing City-owned GSI Measures</td>
<td>Located within 500 feet of an existing City-owned GSI measure</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Located more than 500 feet away from an existing City-owned GSI measure</td>
<td>1</td>
</tr>
<tr>
<td>Groundwater Recharge Area</td>
<td>Located within a designated groundwater recharge area and located at least 500 feet outside of a groundwater plume approximate limits</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Located outside of a designated groundwater recharge area</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^5\)The Metropolitan Transportation Commission defines communities of concern as census tracts that have a concentration of both minority and low-income households, or that have a concentration of three or more of the following six factors but only if they have also a concentration of low-income households: limited English proficiency, zero-vehicle household, seniors 75 and over, people with disability, single-parent family, or severely rent-burdened household.
Parts F – I: City Prioritization Results

After assigning the appropriate values for each project location characteristic, staff totaled the criteria values for each project location to determine one final value per project location. Once completed, staff calculated the following percentiles based on the distribution of the final values to designate priority levels:

- **“High priority” project locations:** 85th percentile or higher
- **“Medium priority” project locations:** 26th – 84th percentiles
- **“Low priority” project locations:** 25th percentile or lower

“High priority” project locations include the project locations deemed to hold the most potential for installing GSI measures, based on a number of characteristics described above. While these associated priorities will be beneficial in guiding efforts for assessing potential locations of GSI measures, the priorities are subject to change with the City’s infrastructure and community needs. As such, the list of prioritized project locations will be reviewed annually per the City’s approved yearly Capital Annual Budget, updates to other City Plans (per Section 8) and to accommodate other changes, such as in funding or project status. The final prioritized project location list and associated maps are available in Appendices A – O. **Figure 4.1** is an overview of the prioritized project locations throughout the City.

FIGURE 4.1: City-Owned Properties and Proposed/Planned Projects Prioritized by Location

See Appendices A – O for additional maps and table of prioritized locations.
TABLE 4: PLANNED CITY-OWNED GSI MEASURES

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Project Type</th>
<th>Type of GSI Project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway 101 Pedestrian/Bicycle Overpass</td>
<td>Construction</td>
<td>Special</td>
<td>Highway 101 corridor north of San Antonio Road interchange by Adobe Creek</td>
</tr>
<tr>
<td>California Ave Area Parking Garage (Lot 7)</td>
<td>Construction</td>
<td>Parcel</td>
<td>350 Sherman Avenue</td>
</tr>
<tr>
<td>Downtown Parking Garage (Lot D)</td>
<td>Construction</td>
<td>Parcel</td>
<td>375 Hamilton Avenue</td>
</tr>
<tr>
<td>Public Safety Building (Parking Lot 6)</td>
<td>Construction</td>
<td>Parcel</td>
<td>Parking Lot C-6 (250 Sherman Avenue)</td>
</tr>
<tr>
<td>Charleston / Arastradero Corridor</td>
<td>Construction</td>
<td>Street</td>
<td>Charleston/Arastradero Road from Fabian Way to Miranda Avenue</td>
</tr>
<tr>
<td>Fire Station 3<sup>7</sup></td>
<td>Construction</td>
<td>Parcel</td>
<td>799 Embarcadero Road</td>
</tr>
</tbody>
</table>

⁷ Fire Station 3 is currently under construction and has an anticipated completion date by Fall 2019.
SECTION 5

IMPERVIOUS SURFACE TARGETS
5.1 BACKGROUND

The MRP requires the City of Palo Alto to predict the levels of redevelopment and the associated green stormwater infrastructure (GSI)\(^1\) implementation that will occur in the City by 2020, 2030, and 2040 on both City-owned and private retrofitted\(^2\) properties. The following predictions are based on a high-level, data-based modeling scenario carried out by SCVURPPP, which conducted this work for all municipalities that participate in its program area (all Santa Clara County municipalities that discharge into the Bay). Predictions are based on data of past development, the City’s Comprehensive Plan 2030 and direction from the Planning Department; however, estimating the future development market is complex and based on various assumptions and unknowns. Thus, these should only be used as indications of potential GSI implementation in the future. City staff will work to refine these preliminary estimates over time, as systems are put in place to better document redevelopment and the amount of associated GSI measures.

This refined approach is described below and includes two phases, both of which have been implemented and the results are described in this memorandum:

1) Predicting the Anticipated Level of Future GSI Implementation via Redevelopment of Private- and City Parcels – A non-spatial analysis was conducted to predict future GSI implementation on City-owned and private parcels within the City’s jurisdiction, based on the rate of redevelopment that has occurred over the past 10 years in the City of Palo Alto.\(^3\) This phase provides a prediction of the cumulative acres of land in 2020, 2030, and 2040 that are anticipated to be addressed via GSI measures installed on City and privately-owned parcels.

2) Identifying the Location of Future GSI Implementation and Developing Impervious Surface Retrofit Targets – Subsequent to Phase I, a spatial analysis was conducted to derive impervious surface targets for GSI retrofits associated with these parcels, as required by the MRP. Phase II provides a prediction of the land use of the parcels that are anticipated to be addressed via GSI measures by 2020, 2030, and 2040.

5.2 PHASE 1 – PREDICTING THE ANTICIPATED LEVEL OF FUTURE GSI IMPLEMENTATION

The goal of this Phase was to identify levels of GSI implementation predicted to occur by 2020, 2030 and 2040 via the redevelopment of City- and privately-owned parcels in the City regulated by new and redevelopment requirements in the current MRP. Provision C.3 requires projects that create (i.e., new development) or replace (i.e., redevelopment) at least 10,000 square feet of impervious surfaces (e.g., roofs, parking lots and walkways) must include GSI that treats runoff created on-site.

For future redevelopment predictions, the 10-year timeframe of 2009 to 2018 was used, as it is considered to be typical of future redevelopment (2019-2040 in the Bay Area). A total of 267 acres were redeveloped in the City during the 2009-2018 timeframe\(^4\), resulting in a rate of 26.7 acres per year. However, because of expected drops of future non-residential redevelopment in the City (per the Comprehensive Plan), staff chose to use a rate of 15.0 acres per year for this analysis (i.e., to estimate the amount of impervious surfaces created per the rate of future redevelopment). This rate (15 ac/yr.) was applied to the 2020, 2030, and 2040 milestones outlined in the MRP in order to estimate the amount of GSI that will be installed. These estimates assumed that the amount of installed GSI equaled that amount of acres being redeveloped (i.e., 15 acres being redeveloped = 15 acres of GSI being installed).

Although 267 acres were redeveloped in the City from 2009-2018, only 240 acres have been identified to have included GSI. Thus, 240 acres were used as a baseline (or “best” estimate) for the amount of GSI that is expected to have been installed through the end of 2018. Table 5.1 shows that 240 acres was used as a starting point to estimate the amount of GSI that will be redeveloped at each of the milestones mentioned. It provides the outputs of the analysis.

\(^1\)For the purpose of this memorandum, GSI-associated redevelopment projects include those that are either privately or City-owned and parcel-based (i.e., no green streets, or GSI in the right-of-way, are included in the predictions). All predictions assume that all redevelopment projects would be regulated by new and redevelopment requirements in the current MRP (i.e., C.3 project).

\(^2\)Retrofitted means that land that does include GSI triggers MRP requirements when redeveloped and must install GSI to treat runoff created on-site.

\(^3\)All information on GSI measures and land area addressed by GSI in the Santa Clara Valley was accessed through the SCVURPPP GSI database, which is currently under development and will be City accessible in late 2019.

\(^4\)Total area addressed by parcel-based redevelopment projects with GSI completed (excludes green street projects)
TABLE 5.1: PROJECTED CUMULATIVE LAND AREA (ACRES) ANTICIPATED TO BE ADDRESSED VIA GSI MEASURES INSTALLED ON PRIVATE AND CITY PARCELS IN THE CITY OF PALO ALTO BY 2020, 2030, AND 2040.

<table>
<thead>
<tr>
<th>Year</th>
<th>Low 1 (ac)</th>
<th>Best 2 (ac)</th>
<th>High 3 (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing GSI (installed 2009-December 31, 2018)</td>
<td>-</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>2020</td>
<td>255</td>
<td>270</td>
<td>285</td>
</tr>
<tr>
<td>2030</td>
<td>330</td>
<td>420</td>
<td>510</td>
</tr>
<tr>
<td>2040</td>
<td>405</td>
<td>570</td>
<td>735</td>
</tr>
</tbody>
</table>

1Low estimate – projected from 50% of “Best Estimate”; 2Best estimate – rate of redevelopment based on 10-year average (2009-2018); and 3High estimate – projected from 150% of “Best Estimate”.

and represents the total acreage known to be addressed by GSI based on the baseline of 240 and applies the rate of 15 ac/yr. to estimate cumulative land area addressed by GSI in 2020 (270 acres), 2030 (420 acres), and 2040 (570 acres) on City and private parcels. Furthermore, the same rate is used to estimate both the “low” (i.e., 50% < “best”) and “high” (i.e., 50% > “best”) estimates to account for a range of potential redevelopment levels and account for uncertainty in the “Best” estimate.

5.3 PHASE II – IDENTIFYING THE LOCATION OF FUTURE GSI IMPLEMENTATION AND DEVELOPING IMPERVIOUS SURFACE TARGETS

As previously mentioned, the MRP requires the City to develop (and include in its GSI Plan) targets for the amount of impervious surface in the City that will be retrofitted via GSI by 2020, 2030 and 2040. The estimated amounts of future GSI implementation developed via Phase I provides a starting point for addressing these needs. However, to develop impervious surface retrofit targets, the general types of land use that may be redeveloped was analyzed as different types of land uses are assumed to have varying ranges of associated percent imperviousness. Thus, estimating the general locations of redevelopment allowed an estimate of impervious targets by land use. The process and assumptions used to predict future locations of GSI implementation (i.e., the general locations of the 15.0 ac/yr.) are described in this Section, including the results of the analysis.

5.3.1 LOCATION AND TIMING OF FUTURE GSI IMPLEMENTATION

Applicable Land Areas Subject to Future GSI Requirements

Additional City-owned and private parcels subject to MRP requirements to install GSI (due to 10,000 square feet or more of impervious surfaces) were considered to be conceptually available for redevelopment with GSI. Using land use data compiled and improved by SCVURPPP over the past 10 years, particular land uses that do not have to meet the MRP requirement as well as parcels with existing GSI and those parcels that are planned to be or being actively redeveloped were excluded from the analysis. The following categories were excluded from the impervious surface targets analysis:

- Already contains GSI (240 acres)
- Known (planned/active) redevelopment projects (38 acres)
- Residential (~4,060 acres)
- Open space and large pervious areas, such as parks and undeveloped urban areas
- City schools (K-2), colleges and universities (~220 acres)
- Freeways/expressways (~195 acres)
- Roadways/streets (~325 acres)

1Undeveloped urban areas were excluded from the analysis of potential locations for GSI implementation because they are largely pervious and therefore do not fit the intent of provision C.3.j.2.(c), which requires Co-permittees to develop and include in their GSI Plans targets for the amount of impervious surface that will be retrofitted.
- Railroads lines and stations (~50 acres)
- Utilities – water/wastewater/electrical substations (~25 acres)
- Airports (~ 90 acres)
- Federal Veterans Affairs (VA) Hospital (~65 acres)

The remaining parcels not excluded in this list are primarily commercial, industrial, retail, and high-density residential land uses. The outcome is that there are approximately 880 additional parcels totaling 1,500 acres that were identified as areas subject to the MRP that may be redeveloped and have potential for GSI implementation by 2040.

Identifying which Parcels are likely to Undergo Redevelopment

Based on the redevelopment rates calculated in Phase I, a total of 300 acres of land within the City is anticipated to be redeveloped with GSI measures between 2020 and 2040 based on the “best” estimate (Table 5.1). Consequently, only a portion of the area available for redevelopment (1,500 ac) is predicted to actually redevelop by 2040 based on the rate of redevelopment used for the City in this analysis (15 ac/yr).

To assist in identifying the subset of land areas available for redevelopment that have a higher probability of being redeveloped and addressed via GSI measures by 2040, information on the characteristics of land areas recently redeveloped in the Santa Clara Valley were used to develop a model for predicting redevelopment potential. Although it is not possible to precisely determine the exact locations where GSI will be implemented in the future, predicted locations are needed to establish impervious surface retrofit targets required by the MRP.

To develop the predictive model, the following factors/characteristics of parcels redeveloped in the Santa Clara Valley between 2002 and 2017⁶ were evaluated to determine if they should be considered when predicting future GSI implementation:

1. Date of initial development or previous redevelopment
2. Existing land use type
3. Size of parcel
4. Proximity to other/prior redevelopment areas

Data from 2002-2017 for all of Santa Clara County was used when evaluating these factors to increase the size of the dataset. The results of the evaluation and associated weighting factor selected as model inputs are briefly summarized in Table 5.3. In addition to the deterministic factors in Table 5.2, a “randomization” factor was included in the process to identify parcels that will likely redevelop by 2040. Adding a randomization factor adjusted for inappropriate skewing of predicted redevelopment towards large industrial parcels.

Table 5.2: Summary of Weighting Factors for Each Characteristic Identified as an Important Variable to Predict the Location of Future GSI Implementation in Santa Clara Valley

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Weighting Factors</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Previous Development/Redevelopment</td>
<td>0 to 1</td>
<td>Parcels built in the 1990s are projected to redevelop at a lower rate than parcels developed prior to this date. Parcels built after 2000 are not projected to redevelop between 2020 and 2040.</td>
</tr>
<tr>
<td>Land Use</td>
<td>0.43 to 0.76</td>
<td>Parcels with certain land uses are redeveloping at higher rates, compared to others. The weighting factor for each land use was adjusted such that the parcels selected for redevelopment are in the same proportion to those previously redeveloped between 2002 and 2017.</td>
</tr>
<tr>
<td>Parcel Size</td>
<td>0 to 1</td>
<td>Between 2002 and 2017, larger parcels have redeveloped at a higher rate than smaller parcels.</td>
</tr>
</tbody>
</table>

⁶Undeveloped urban areas were excluded from the analysis of potential locations for GSI implementation because they are largely pervious and therefore do not fit the intent of provision C.3.j.i.2.(c), which requires Co-permittees to develop and include in their GSI Plans targets for the amount of impervious surface that will be retrofitted.

⁷The Santa Clara redevelopment data evaluation was completed before 2018 redevelopment data were available, the evaluation was completed using data from the 2002 and 2017 timeframe.
5.3.2 LOCATION AND TIMING OF FUTURE GSI IMPLEMENTATION

Using the current land uses of the predicted locations of GSI implementation developed via the redevelopment model described in Section 5.3.1 and associated impervious surface percentage coefficients for each land use type, estimates of the amount of impervious surface that would be retrofitted with GSI on City and privately-owned parcels were developed. Table 5.3 lists the impervious surface percentage for each land use class, based on impervious surface coefficients typically utilized, and the estimated impervious surfaces for City and private parcel-based projects that are predicted to be retrofitted by 2020, 2030 and 2040 in the City of Palo Alto via new GSI implementation. These predictions should be considered first-order estimates and are subject to revision as information improves over time. Estimates of impervious surface retrofits due to future GSI projects conducted in the City right-of-way will also be added in the future.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>% of Area Impervious*</th>
<th>Retrofits via GSI Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Area (acres)</td>
<td>Impervious Area (acres)</td>
</tr>
<tr>
<td>Commercial</td>
<td>83%</td>
<td>113</td>
</tr>
<tr>
<td>Industrial</td>
<td>91%</td>
<td>34</td>
</tr>
<tr>
<td>K-12 Private Schools</td>
<td>67%</td>
<td>2</td>
</tr>
<tr>
<td>Residential - High Density</td>
<td>82%</td>
<td>30</td>
</tr>
<tr>
<td>Residential - Low Density</td>
<td>47%</td>
<td>20</td>
</tr>
<tr>
<td>Retail</td>
<td>96%</td>
<td>20</td>
</tr>
<tr>
<td>Urban Parks</td>
<td>20%</td>
<td>18</td>
</tr>
<tr>
<td>Open Space⁵</td>
<td>1%</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Cumulative⁶</td>
<td></td>
<td>240</td>
</tr>
</tbody>
</table>

*Source: Existing Land Use in 2005: Data for Bay Area Counties, Association of Bay Area Governments (ABAG), January 2006

发育增长总计从2002-2018可能包括新开发的开放空间和空置的财产。

The total area for 2019-2020 is based on measures that are currently under construction or planned to occur prior to 2020 and not the Phase I redevelopment rate and may therefore deviate from the "Best" acres presented for 2020 in Table 5.1.

Totals in this table differ slightly from predictions presented in Table 5.1 due to the inclusion of entire parcels in this table, as opposed to more generic “land areas” projections presented in Table 1.
As part of implementing the GSI Plan, the City must have a process for tracking and mapping completed public and private projects, and making the information available to the public. The City will provide data to SCVURPPP for county-wide tracking of completed public and private GSI projects. These tracking systems are described in more detail below.

6.1 CITY PROJECT TRACKING SYSTEM

The City currently utilizes an internal tracking system to manage stormwater program inspections and enforcement actions. In calendar year 2019, the City will update its internal tracking system to a cloud-based stormwater compliance software, which will allow the City to manage a comprehensive database of GSI and other stormwater treatment measures. This new, map-based, software will allow staff to complete inspection reports in real-time in the field; sync inspection sites with GIS data for accurate location data and additional knowledge of sites; integrate with planning and asset management systems within the City (including Accela and Maintenance Connection); schedule inspections and automatic follow-up actions; and have access to more comprehensive metrics. Moreover, the City will have the ability to export relevant data to be uploaded into the county-wide project tracking system, as described in the Section 6.2.

6.2 COUNTY-WIDE PROJECT TRACKING SYSTEM

SCVURPPP developed a centralized, web-based data management system, with a connection to GIS platforms for tracking and mapping all GSI projects in the Santa Clara Valley. The GSI Database provides a centralized, accessible platform for municipal staff to efficiently and securely collect, upload, and store GSI project data, and enhances SCVURPPP’s ability to efficiently and accurately calculate and report water quality benefits associated with GSI projects. It also allows portions of the GSI project information to be made publicly available.

6.2.1 DATA COLLECTION PROCESS

The primary GSI data collection process is implemented at the City level. City staff will continue to collect and manage information on GSI projects locally using the data management systems described above. City staff will then directly enter project data into the SCVURPPP GSI Database through a web-based data entry portal for individual projects or upload data for multiple projects in batch using standardized formats.

6.2.2 DATA OUTPUT

The GSI Database has the capability to output information required for regulatory annual reports as well as data needed to calculate pollutant loads reduced, runoff volume reductions, and impervious area reduced. Maps displaying project locations and other related attributes such as pollutant generation, watershed boundaries, and water bodies can also be produced.
SECTION 7

GUIDELINES AND SPECIFICATIONS
The MRP requires that the Plan include general design and construction guidelines, and standard specifications and details (or references to those documents) for incorporating GSI components into projects within the City. These guidelines and specifications should address the different street and project types within the City, as defined by its land use and transportation characteristics, and allow projects to provide a range of functions and benefits, such as stormwater management, bicycle and pedestrian mobility and safety, public green space, and urban forestry.

The City, along with other SCVURPPP agencies, helped fund and provided input to the development of county-wide guidelines by SCVURPPP to address the MRP requirements and guide the implementation of GSI Plans. The resulting SCVURPPP GSI Handbook¹ (Handbook) is a comprehensive guide to planning and implementation of GSI projects in public streetscapes, parking lots and parks. The City intends to use this Handbook as a reference when creating City-specific guidelines and specifications to meet the needs of the various departments. The contents of the Handbook are described in the following Sections.

7.1 DESIGN GUIDELINES

Part 1 of the Handbook provides guidance on selection, integration, prioritization, sizing, construction, and maintenance of GSI measures. It includes sections describing the various types of GSI, their benefits, and design considerations; how to incorporate GSI with other uses of the public right-of-way, such as bicycle and pedestrian infrastructure and parking; and guidelines on utility coordination and landscape design for GSI. In addition, the Handbook also provides guidance on post-construction maintenance practices and design of GSI to facilitate maintenance.

Part 1 also contains a section on proper sizing of GSI measures. Where possible, GSI measures should be designed to meet the same sizing requirements as Regulated Projects, which are specified in MRP Provision C.3.d. In general, the treatment measure design standard is capture and treatment of 80 percent of the annual runoff (i.e., capture and treatment of the small, frequent storm events). However, if a GSI measure cannot be designed to meet this design standard due to constraints in the public right-of-way or other factors, the City may still wish to construct the measure to provide some runoff reduction and water quality benefit and achieve other benefits (e.g., decreasing street widths and pedestrian crossing distances, etc.). For these situations, the Handbook describes regional guidance on alternative design approaches developed by BASMAA for use by MRP permittees².

7.2 DETAILS AND SPECIFICATIONS

Part 2 of the Handbook contains typical details and specifications that have been compiled from various sources within California and the U.S. and modified for use in Santa Clara County (see Figure 7.1 for an example detail). The Handbook includes details for pervious pavement, stormwater planters, stormwater curb extensions, bioretention in parking lots, infiltration measures, and stormwater tree wells, as well as associated components such as edge controls, inlets, outlets, and underdrains. It also provides typical design details for GSI measures in the public right-of-way that address utility protection measures and consideration of other infrastructure in that space.

7.3 INCORPORATION OF TYPICAL GSI DETAILS AND SPECIFICATIONS INTO CITY STANDARDS

The City’s engineering standards for both the Departments of Public Works and Utilities were reviewed as part of the development of a process and recommendations for incorporation of the GSI details and specifications from the Handbook into the City standards. The standards include definitions and technical specifications for elements (such as sidewalks and curb and gutters) that may affect the implementation of GSI in the City. Consequently, the City will need to create its own GSI specifications (based on those recommended by SCVURPPP) that incorporate requirements from these City departments as well as others.

¹The SCVURPPP GSI Handbook is available online at http://scvurppp.org/scvurppp_2018/swrp/resource-library/.
7.4 INPUT FROM CITY OF PALO ALTO STAFF

Two meetings were held with staff from different City departments in October 2018 to obtain additional feedback regarding City-specific GSI guidelines and standards for both public and private projects. The meeting goals included the following:

- Provide information on GSI, the City’s GSI Plan, and available resources.
- Review examples of SCVURPPP typical GSI details and compare them to the City’s existing details.
- Obtain input regarding the process for incorporating the GSI details and specifications into City departmental standards, such as for Public Works and Utilities.

- Inform a Scope of Work for a consultant to create City-specific GSI specifications.

The following is a summary of the input received from City staff during the two meetings in October regarding the process and recommendations for the incorporation of the GSI details and specifications into the City standards:

- Develop an index of standard conditions for GSI measures based on staff input.
- Outline a process for integrating GSI into public rights-of-way, with a focus on smaller transportation projects.
- Review and, if needed, improve the plan review process for GSI projects in the public right-of-way. Ensure that all projects in the right-of-way are...

reviewed by the Utilities Department and other departments as needed.

- Ensure that the design team for GSI projects has experience with the construction and implementation of GSI projects.
- Develop a flow chart to evaluate the feasibility of a potential project in the right-of-way based on field conditions and the presence of utilities.
- Include funds for utility relocation in a GSI project’s budget.
- Document lessons learned from both completed GSI projects in the City, and effective details and specifications utilized throughout those completed projects.
- Include maintenance and its associated funding as a significant consideration for integrating GSI in City projects. These considerations should include maintenance issues, such as evaluating the effort required for maintaining plant types and removing stains on permeable pavers.
- Evaluate and integrate differing edge conditions, such as curbs, into the standard drawings.
- Integrate GSI considerations into the Underground Service Alert (USA dig alert) protocols.
- Ensure as-builts of utility locations are available to all departments and GSI designers. Integrate utility standards within GSI standards.
- Include all departments in the development of GSI standards within City standards.

The information collected during these workshops will inform the City’s Scope of Work to hire a consultant that will assist the City in creating City-specific guidelines and specifications following the acceptance of the Plan. These will not only meet MRP requirements, but will also allow public and private GSI projects to be designed and constructed consistently. Consequently, the projects will be able to be monitored, maintained and inspected using standardized protocols to ensure long-term effectiveness.
SECTION 8

INTEGRATION WITH CITY PLANS AND DOCUMENTS
8.1 REGULATORY REQUIREMENTS
To ensure effective implementation of the Plan, the City’s planning documents and policies should include adequate wording to align with the Plan and ensure integration per the City’s vision with respect to GSI. The MRP states that the GSI Plan “shall contain” various elements, including integration per the wording below (emphasis purposely added to some statements). Consequently, various City planning documents across Departments were evaluated to determine to what extent they were aligned with the Plan.

“(h) A summary of the planning documents the Permittee has updated or otherwise modified to appropriately incorporate green infrastructure requirements, such as: General Plans, Specific Plans, Complete Streets Plans, Active Transportation Plans, Storm Drain Master Plans, Pavement Work Plans, Urban Forestry Plans, Flood Control or Flood Management Plans, and other plans that may affect the future alignment, configuration, or design of impervious surfaces, including, but not limited to, streets, alleys, parking lots, sidewalks, plazas, roofs, and drainage infrastructure. Permittees are expected to complete these modifications as a part of completing the Green Infrastructure Plan, and by not later than the end of the permit term.

(i) To the extent not addressed above, a work plan identifying how the Permittee will ensure that green infrastructure and low impact development measures are appropriately included in future plans (e.g., new or amended versions of the kinds of plans listed above).”

8.2 CITY PLANNING DOCUMENTS
Several planning documents address different elements related to GSI, including land use, transportation, sustainability, conservation, urban forestry, environmental leadership, infrastructure, and housing. Overall, no planning documents were identified that prevent the implementation of GSI projects within the City. Moreover, some planning documents already contain language to support the GSI Plan. However, various plans need to be better aligned with the GSI Plan to require the integration of GSI and use of the various tools, specifications and guidelines addressed in this Plan and through subsequent implementation.

8.3 SPECIAL PLANNING AREAS AND SPECIFIC PLANS
Specific plans (as well as comprehensive area and master plans) are valuable tools for coordinating multiple planning, design, infrastructure, utilities and GSI elements. This type of approach optimizes shared amenities, efficient use of resources and ensures that various planning goals can be met at a workable scale. Watershed Protection staff is currently participating in both the development of the City’s North Ventura Coordinated Area Plan and the co-design by both the City and PAUSD of the Cubberley Master Plan in order to integrate GSI and LID approaches throughout the planning sites and effectively coordinate with Planning staff. Watershed Protection will continue to be actively involved in these type of efforts, such as the upcoming Downtown Coordinated Area Plan, to ensure adequate integration with the GSI Plan vision.

8.4 FUTURE INTEGRATION OF GSI LANGUAGE
Table 8.1 lists all City plans that were reviewed for GSI integration as well as documents currently in development. It also provides a general timeline regarding updates to improve integration with this Plan. Additional details regarding the extent of GSI language included within each plan are provided in Appendix P.

Per the MRP, language supporting GSI will need to be added to these plans during their next update. If these updates do not occur during the current permit term, an interim policy will be adopted by the City Manager to direct staff to follow the GSI Plan. Watershed Protection staff will support the City’s plan development process when revising or updating existing planning documents or when developing new planning documents in order to ensure that GSI requirements and policies are incorporated. Finally, the implementation process described in Section 14.0 will help ensure this requirement is met.

8.5 REGIONAL PLANS
The City is working with SCVURPPP, Valley Water, and other agencies to integrate and coordinate several large-scale planning efforts related to stormwater management and GSI, including the following:

• Santa Clara Basin Stormwater Resources Plan (SWRP) – A collaboration between SCVURPPP and
TABLE 8.1: CITY PLANS/POLICIES AND STATUS OF GSI INTEGRATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Last Approved/Updated</th>
<th>Projected Update</th>
<th>Includes Language to Support GSI Language?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANS/POLICIES IN PLACE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicycle and Pedestrian Transportation Plan</td>
<td>Jul-12</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>City Parks Sustainability Review</td>
<td>2014-2015</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Comprehensive Plan</td>
<td>Jun-17</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Department of Public Works Strategic Plan (2016-18)</td>
<td>Dec-15</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Parks, Trails, Natural Open Space and Recreation Master Plan (Revised Draft, May 2017)</td>
<td>Aug-17</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Sea Level Rise Adaptation Policy</td>
<td>Mar-19</td>
<td>N/A (to be followed by Implementation Plan)</td>
<td>Yes</td>
</tr>
<tr>
<td>Sewer System Management Plan</td>
<td>Nov-17</td>
<td>Fall 2019</td>
<td>No</td>
</tr>
<tr>
<td>Storm Drain Master Plan</td>
<td>Jun-15</td>
<td>Unknown</td>
<td>No</td>
</tr>
<tr>
<td>Sustainability and Climate Action Plan</td>
<td>Nov-16</td>
<td>2020</td>
<td>Yes</td>
</tr>
<tr>
<td>Sustainability Implementation Plan</td>
<td>Dec-17</td>
<td>2020</td>
<td>Yes</td>
</tr>
<tr>
<td>Urban Forest Master Plan</td>
<td>May-15</td>
<td>2020</td>
<td>Yes</td>
</tr>
<tr>
<td>Urban Water Management Plan</td>
<td>Jun-16</td>
<td>2021 (estimate)</td>
<td>No</td>
</tr>
<tr>
<td>PLANS IN PROGRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baylands Comprehensive Conservation Plan (BCCP)</td>
<td>Not yet adopted; estimated fall 2019</td>
<td>In Progress</td>
<td>To be included</td>
</tr>
<tr>
<td>Cubberley Community Center Co-Design Master Plan</td>
<td>Not yet adopted; estimated summer 2019</td>
<td>N/A (New effort)</td>
<td>To be included</td>
</tr>
<tr>
<td>North Ventura Coordinated Area Plan</td>
<td>Not yet adopted; estimated summer 2020</td>
<td>N/A (New effort)</td>
<td>To be included</td>
</tr>
<tr>
<td>Sea Level Rise Implementation Plan</td>
<td>Not yet adopted; estimated summer 2020</td>
<td>N/A (New effort)</td>
<td>To be included</td>
</tr>
<tr>
<td>Tree and Landscape Technical Manual</td>
<td>Not yet adopted; estimated Fall 2019</td>
<td>In Progress</td>
<td>To be included</td>
</tr>
</tbody>
</table>

Valley Water during 2017-2018, the SWRP supported municipal GSI Plans by identifying and prioritizing potential multi-benefit GSI opportunities on a high level for both parcels owned by the various municipalities and street rights-of-way throughout the Basin (i.e., Santa Clara Valley). Inclusion of these potential project locations allows them to be eligible for State bond-funded implementation grants. The SWRP includes a list of prioritized GSI opportunity locations for each SCVURPPP agency, including the City of Palo Alto. The GSI Plan builds on the SWRP output to further identify, evaluate, and
prioritize potential opportunities, while developing the comprehensive long-term GSI implementation roadmap for the City.

- **Reasonable Assurance Analysis (RAA)** – To meet MRP requirements, SCVURPPP initiated a county-wide effort to develop an RAA to estimate baseline PCB and mercury loads in stormwater discharges to the Bay from its member agencies’ jurisdictions, determine load reductions to meet assigned load allocations, and set goals for the amount of GSI needed to meet the portion of PCB and mercury load reduction the MRP assigns to GSI. The RAA is planned for completion by September 2020, and some results from the efforts to date have informed this GSI Plan.

- **One Water Plan** – Valley Water’s Watershed Division is leading an effort to develop an Integrated Water Resources Master Plan to identify, prioritize, and implement activities at a watershed scale to maximize established water supply, flood protection, and environmental stewardship goals and objectives. The One Water Plan establishes a framework for long-term management of Santa Clara County water resources, which eventually will be used to plan and prioritize projects that maximize multiple benefits. The One Water Plan incorporates knowledge from past planning efforts, builds on existing and current related planning efforts; and coordinates with relevant internal and external programs. The One Water Plan has five goals:
 - “Valued and Respected Rain” – Manage rainwater to improve flood protection, water supply, and ecosystem health.
 - “Healthful and Reliable Water” – Enhance the quantity and quality of water to support beneficial uses.
 - “Ecologically Sustainable Streams and Watersheds” – Protect, enhance and sustain healthy and resilient stream ecosystems.
 - “Resilient Baylands” – Protect, enhance and sustain healthy and resilient Baylands ecosystems and infrastructure.
 - “Community Collaboration” – Work in partnership with an engaged community to champion wise decisions on water resources.

 Tier 1 of the effort, for which a draft plan was completed in 2016, is a county-wide overview of major resources and key issues along with identified goals and objectives. Tier 2 (2016 to 2020) will include greater detail on each of the County’s five major watersheds. Efforts related to the Coyote Watershed are in progress.

- **The Bay Area’s Integrated Regional Water Management Plan (IRWMP)** – The Bay Area IRWMP is a comprehensive water resources plan for the Bay region that addresses four functional areas: (1) water supply and water quality; (2) wastewater and recycled water; (3) flood protection and stormwater management; and (4) watershed management and habitat protection and restoration. It provides a venue for regional collaboration and serves as a platform to secure state and federal funding. The IRWMP includes a list of over 300 project proposals, and a methodology for ranking those projects for the purpose of submitting a compilation of high priority projects for grant funding. The Santa Clara Basin SWRP was submitted to the Bay Area IRWMP Coordinating Committee and incorporated into the IRWMP as an addendum. As SWRP projects are proposed for grant funding, they will be added to the IRWMP list using established procedures.
The total cost of GSI includes costs for planning, capital (design, engineering, construction) and ongoing expenditures, including operations and maintenance (O&M), utility relocation, and measure replacement. It is likely that no single source of revenue will be adequate to fund implementation of GSI, and a portfolio of funding sources will be needed. There are a variety of approaches available to help fund up-front and long-term investments. This Section discusses the City’s current stormwater management funding sources as well as a list of potential future options to complement the current funding. This list is a starting point, while Watershed Protection develops a thorough funding strategy to implement this Plan.

9.1 CURRENT STORMWATER MANAGEMENT FUNDING

In April 2017, City of Palo Alto property owners demonstrated their high level of commitment to stormwater issues by voting to approve the continuation of a new Stormwater (known as Storm Water when passed) Management Fee (SWMF), which became effective June 1, 2017. The SWMF funds routine stormwater system maintenance and operation that keep the City’s stormwater infrastructure at peak performance and provides for stormwater system improvements that prevent street flooding. Moreover, the SWMF also provides approximately 7 percent ($505,000 for fiscal year 2019) annually for GSI projects and “innovative” type projects, such as the City’s residential and commercial incentive rebates for installing GSI measures such as cisterns, rain barrels, and pervious paving. The fee also funds stormwater pollution prevention programs and other projects necessary to meet MRP requirements. In FY 19-20, GSI funds will be used to help fund the construction of GSI measures as part of City projects and obtaining consultant support to complete additional items determined necessary to implement the GSI Plan. Funding from the SWMF can help jumpstart GSI projects, and, more importantly, leverage funding sought from granting agencies and foundations. Figure 9.1 outlines how the fee is allocated annually.

FISCAL YEAR 2019

- Green Infrastructure and Incentive programs, $0.97
- Debt Service for Past Capital Projects, $1.82
- Storm Drain Capital Improvements and Repairs, $4.99
- Engineering, $0.74
- Storm Drain System Maintenance and Emergency Response
- Stormwater Quality Protection (preventing pollution at construction sites, industry and business), $2.19

7.78 of the Fiscal Year 2019 fees (55%) would fund new capital projects, "green infrastructure" and rebate programs that help businesses and residents reduce flooding and pollution.

6.27 (45%) would fund on-going stormwater management (base) programs

Fiscal year 2019 lasts from July 1, 2018 June 30, 2019.
9.2 EVALUATION OF ADDITIONAL FUNDING OPTIONS

As required by the MRP, the City conducted an evaluation of potential private and public funding options for design, construction, and long-term maintenance of prioritized GSI projects. Sources of information used as references for the City's evaluation of funding options included:

- SCVURPPP’s GSI Funding Options Guidance (2018);
- San Mateo City/County Association of Governments’ Potential Funding Source Analysis and Recommendations (2014); and
- California Stormwater Quality Association’s Stormwater Funding Barriers and Opportunities (2017).

This section provides a brief description of the different funding options evaluated by the City as part of preparing the Plan, including development impact fees, grants and private-public partnerships. Note that these options are not presented in an order of priority or importance.

9.2.1 ALTERNATIVE COMPLIANCE

Alternative compliance, using off-site construction or in-lieu fees, allows a developer flexibility to build or contribute financially to an off-site stormwater treatment system when unable to meet stormwater treatment requirements within the regulated project site or when it is more beneficial for water quality to provide stormwater treatment or flow controls off-site. Provision C.3.e.i of the MRP allows the following alternative compliance options:

- Construction of a joint stormwater treatment facility that treats combined runoff from two or more regulated projects;
- Construction of a stormwater treatment system off-site (on public or other private property) that treats an equivalent amount of impervious surface and provides a net environmental benefit;
- Payment of an in-lieu fee (for capital and O&M expenses) for a Regional Project or municipal stormwater treatment facility on other public or private property.

Another type of alternative compliance program is a credit trading program. Credits are created by one property owner and traded with other property owners. The program is typically managed by a government agency and can create incentives to treat stormwater in excess of the permit requirements on regulated sites, while also creating incentives to install systems that treat stormwater on non-regulated sites. The current MRP does not specifically mention credit trading programs, but such a program could be developed in consultation with the Regional Water Board as a form of alternative compliance.

Each alternative compliance option creates obligations for City staff in addition to benefits and drawbacks for the City and developer. In addition, some of the options may require updates to an agency’s municipal code in order to implement them.

The City currently allows alternative compliance approaches within its jurisdiction but like most other Bay Area agencies, it does not have an established in-lieu fee or credit trading program. The City will consider these approaches in the future as they become more widely used and accepted and as local models for in-lieu fee and credit trading programs become available.

9.2.2 BALLOTED APPROACHES

As a result of the passage of Proposition 218 in 1996, the California Constitution requires voter or property-owner approval to levy new taxes or fees for stormwater management. Parcel taxes, property-related fees, general obligation bonds and other special taxes are the basic types of ballot measures appropriate for stormwater funding. Other types of ballot measures include Infrastructure Financing Districts (requires 2/3 vote of affected properties) and motor vehicle license fees (now considered a tax requiring a 2/3 vote). Since the City already has the SWMF, a property-related fee established via a Proposition 218 process, it does not intend to pursue any other types of balloted approaches at this time.

9.2.3 BENEFIT ASSESSMENT AND COMMUNITY FACILITIES DISTRICTS

Local governments can levy benefit assessments on property owners to fund public improvements and services that specifically benefit their properties. The amount of the assessment is directly related to the amount of benefit the property receives. For example, all property owners in a watershed could be assessed to fund stormwater runoff management programs that provide direct benefit to properties within that watershed. Assessments are not taxes or fees, and must be approved by a weighted majority of the affected property owners that cast votes.

Many municipalities currently have localized special tax and assessment districts that fund the maintenance
and operations of various types of local infrastructure, including Community Facilities Districts (CFDs), “Mello-Roos Districts,” and Landscaping and Lighting Assessment Districts. CFDs may be appropriate for capital-intensive spending in a relatively small area, such as “green street” development.

Both CFDs and benefit assessments are very effective and manageable, but are primarily a tool for new development and are commonly used for larger residential developments throughout California. Most importantly, they are routinely established during the residential development phase, while the developer owns all the property, because establishment is more politically challenging (requiring a balloting of all impacted property owners) after the homes have been sold.

The viability of these funding mechanisms depends on the level of remaining potential development or redevelopment in the City. However, parcels in CFDs and Benefit Assessment Districts need not be contiguous. In other words, the municipality can create revenue districts and require new development to be annexed into the districts as a condition of development.

Benefit Assessment Districts and CFUs are typically used to pay for the annual O&M of something that benefits the paying property, like a local GSI installation. Care should be taken to clearly differentiate between what activities are funded by the CFD levy and a property-related fee/tax, so that both can be collected from the impacted property. CFUs are generally preferred over benefit assessments, because they provide slightly broader flexibility in use and are slightly less expensive to annually administer.

The City may consider a benefit assessment or community facility district in the North Ventura neighborhood or other area of major redevelopment as a potential mechanism for funding GSI construction and/or maintenance.

9.2.4 BUSINESS IMPROVEMENT DISTRICTS

A Business Improvement District (BID) is a mechanism in which businesses and property owners tax themselves and manage the funds to build or maintain certain assets. The BID can be set up and administered by the community members. The City current administers a BID in downtown Palo Alto (managed by the Palo Alto Downtown Business and Professional Association) and assesses an annual fee paid by all businesses within the District. The fee varies based on the type, location, and type of business. The City will consider whether there are any areas within its jurisdiction in which a BID supporting GSI would be appropriate.

9.2.5 DEVELOPMENT IMPACT FEES

A municipality may enact a development impact fee that is paid by an applicant seeking approval of a development project. This type of fee is used to defray all or a portion of the cost of public facilities related to the development project. Under state law, a development impact fee is not a tax or special assessment, and therefore is not subject to voter approval. However, municipalities must carefully prepare and enact a development impact fee program to ensure it meets the requirements in California Government Code §§ 66000-66025 (the Mitigation Fee Act). The City considers implementing development impact fees to be a potential source of funding for GSI capital projects.

In lieu of an impact fee, the City may consider requiring developers to install GSI measures in the public right-of-way adjacent to development or redevelopment projects as part of project conditions of approval. For example, if a redevelopment project necessitates improvements to the sidewalk or curb and gutter along its street frontage, this may create an opportunity for integration of GSI along the frontage, in addition to the on-site stormwater treatment and reduction the project would be required. In this example, the City could explore partnering options for maintenance as well.

9.2.6 GRANTS

Federal, state, and regional grant programs have funding available to local governments to support GSI efforts. These grant programs include:

- California Water Resources Control Board Proposition 1 Stormwater Implementation Grant Program;
- US EPA: Bay Water Quality Improvement Fund;
- California Department of Water Resources: Integrated Regional Water Management Program Implementation Grants;

\footnote{As a result of Senate Bill 985, now incorporated into the California Water Code, stormwater capture and use projects must be part of a prioritized list of projects in a Stormwater Resource Plan in order to compete for state grant funds from any voter-approved bond measures. The Santa Clara Basin SWRP contains a list of prioritized potential parcels and street segments within Palo Alto that would be eligible for funding.}
• California State Parks: Land & Water Conservation Fund and Rails-to-Trails Programs;
• California Department of Forestry and Fire Protection: Urban and Community Program;
• Strategic Growth Council: Urban Greening Program;
• California Office of Emergency Services 404 Hazard Mitigation Grant Program;
• Caltrans Cooperative Implementation Agreements or Grants Program;
• One Bay Area Grant Program (transportation projects).

The City has sometimes used grants as a source of funding and will consider applying for grants to help fund GSI projects in the future.

9.2.7 INTEGRATION WITH TRANSPORTATION PROJECTS
The complete streets and green streets movements have brought more attention to incorporating environmental mitigation elements, such as GSI, into traditional transportation projects. The resulting multi-benefit projects demonstrate how transportation funding can be leveraged to satisfy stormwater goals cost-effectively. Typically, there are three approaches to integrating GSI funding into transportation projects:

1. Opportunistic: Piggy-backing onto transportation grants, or looking for particular sources of transportation funding (e.g., the State Transportation Improvement Program – Transportation Enhancement) that are allowed to be used for both streetscape or bike/pedestrian improvements and stormwater treatment.

2. Planning and Budgeting: Coordinating with the various City departments that are involved with long-range planning and/or the development of CIPs that are transportation-related and evaluating ways to allocate additional funding for GSI elements.

3. Grant-related: Coordinating grants from multiple sources for a single GSI/transportation project.

The City has used some of these approaches in the past and is continuing to look for opportunities to incorporate GSI into transportation projects and leverage transportation funding.

Palo Alto has a City-wide Transportation Impact Fee (TIF) that is assessed against a development project that will have traffic impacts on the City. The amount of the fee is designed to recover some of the costs to the City of mitigating that impact, usually through investment in capital projects. The TIF is designed to recover approximately 4-5 percent of the costs associated with relieving traffic congestion from new development through 2025. Transportation-related CIPs partially funded by these fees may incorporate GSI in the future.

9.2.8 LONG-TERM DEBT INSTRUMENTS
While long-term debt financing is not an additional source of revenue, it is a way for local agencies to obtain funding to jumpstart projects. This approach provides a large injection of capital, which can greatly accelerate public right-of-way improvements such as GSI implementation and storm drain pipeline rehabilitation. General Obligation (GO) Bonds and Certificates of Participation (COPs) are popular methods of funding physical improvements intended to last longer than the repayment period. These mechanisms have low interest repayment rates but incur administrative costs. COPs are not secured and do not need voter approval.

The California Clean Water State Revolving Fund (CWSRF) is one option for long-term debt financing at low interest rates. The debt can be secured by various revenue sources including parcel and other special taxes, fees and assessments. Since its inception in 1989, the CWSRF has provided below-market rate financing for the construction of wastewater treatment and water recycling facilities and other types of pollution control solutions. Eligible projects now include the planning, design, and/or construction of publicly-owned stormwater capture and treatment facilities. The CWSRF also has principal forgiveness loans available for “Green Project Reserve” (GPR) projects that address water or energy efficiency, mitigate stormwater runoff, or encourage sustainable project planning, design, and construction (including GSI projects). The GPR program has a principal forgiveness of 50 percent of actual GPR eligible costs or 75 percent of GPR eligible planning costs, with a maximum loan forgiveness amount of $4.0 million.

The City has used CWSRF financing for past wastewater and recycled water projects and will consider this mechanism for GSI projects.

9.2.9 PUBLIC-PRIVATE PARTNERSHIPS (P3)
Public-Private Partnerships (P3s) have the potential to help communities optimize their limited resources through agreements with private parties to help build and maintain their public infrastructure. P3s have successfully designed, built, and maintained
many types of public infrastructure such as roads and drinking water and wastewater utilities across the U.S. Only recently have agencies begun to explore the use of P3s specifically for stormwater management or to meet Clean Water Act requirements.

In California, P3-enabling legislation was enacted by the state in 2007, and since then, several agencies have used P3s for public infrastructure projects, such as Caltrans with the Presidio Parkway (Doyle Drive) approach to the Golden Gate Bridge in San Francisco and the State of California judicial system with a courthouse in Long Beach. However, to-date, there do not appear to be any P3s that have been developed in the state for the explicit purpose of implementing GSI, possibly because few agencies have stormwater fees that can be leveraged in a P3 program. The City has such a fee and may be able to consider the P3 model for funding a major GSI project.

9.2.10 REALIGNMENT OF MUNICIPAL SERVICES

“Realignment” of stormwater program services to other, more readily-funded services such as water, sewer and refuse collection is a means of leveraging existing resources within the constraints of Proposition 218. Under Proposition 218, water, sewer and refuse collection fees are exempt from the voter approval requirement. A number of public agencies in California have identified stormwater program elements that may legally qualify for inclusion in the water, wastewater or refuse collection categories and have established new or increased fees, and/or re-negotiated existing franchise agreements for such services. An agency should only realign services where there is a clear connection to sewer, water, and/or refuse collection services.

Potential applications related to GSI include realigning a portion of the costs to:

- Capture and infiltrate urban runoff to the water service provider on the basis of recharging groundwater supplies that are or will potentially be tapped for drinking water.
- Capture and infiltrate urban runoff to the water service provider on the basis that such runoff is a direct byproduct of water usage (e.g., irrigation leading to runoff). Ideally, the fees for such services will be largely borne by properties that overuse water, creating urban runoff.
- Capture urban runoff to the sewer provider on the basis of reducing wet weather infiltration and inflow to sewer pipes.

The City currently uses this option to some extent and will consider different ways to align current services in the future.

9.2.11 VOLUNTEER PROGRAMS

Some municipalities have programs for engaging the community with GSI. Typically, engagement includes installation and/or maintenance of landscaping in stormwater bioretention facilities. These programs can benefit the agency by reducing maintenance staff time for paid agency workers or contractors. However, the burden of setting up, administering, training volunteers and tracking results can create a net cost to the agency, and volunteers may not be reliable in the long run for these activities. Partnerships with established volunteer agencies can help alleviate these burdens. Other benefits can include public education and building support for stormwater fees which can make the programs more valuable.

The City has had success partnering with Grassroots Ecology (formerly Acterra) and Canopy to get citizens involved with construction of rain gardens and rain barrels, tree planting, and maintenance of landscaped features and trees, and will continue to encourage these joint efforts. However, volunteer labor is not expected to offset a significant amount of the funding required to construct and maintain GSI facilities.

9.2.12 SUMMARY OF GSI FUNDING OPTIONS

Table 9.1 summarizes funding strategies that will be considered by the City as potential funding sources as the Plan is implemented. For each type of funding mechanism, the table provides a brief overview and specifics related to GSI, requirements for employing the mechanism, pros and cons, and applicability to funding planning, capital, and/or long-term O&M costs. This table will be refined over time.

4For other examples of P3s in California, see: https://en.wikibooks.org/wiki/Public-Private_Partnership_Policy_Casebook.

4It should be noted that AB 2403, signed by Governor Brown in 2014, amended Section 53750 of the California Government Code to clarify that stormwater management activities that benefit or enhance local water supplies can be included in water service fees (which are not required to gain voter approval). AB 2403 appears to broaden the definition of water under Proposition 218 and may help to facilitate programs and projects that use stormwater for water supply.
TABLE 9.1: POTENTIAL GSI FUNDING STRATEGIES FOR THE CITY

<table>
<thead>
<tr>
<th>SECTION/OVERVIEW/USE FOR GSI</th>
<th>REQUIREMENTS</th>
<th>PROS</th>
<th>CONS</th>
<th>APPLICABLE USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Compliance: Allows developers the flexibility to build, or fund through payment of an in-lieu fee, off-site stormwater treatment systems for regulated projects or set up credit trading programs. Leverages development activities to build and maintain GSI systems.</td>
<td>Stormwater can be treated off-site if there is a net water quality benefit. Credits must be calculated using a standardized metric for water quality or quantity benefit.</td>
<td>• Gives flexibility to site GSI systems in locations that optimize pollutant loading reduction and other benefits to the community.</td>
<td>• Can be difficult to come up with viable alternative locations for GSI installations.</td>
<td>• Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allows for off-site stormwater treatment when stormwater management requirements can’t be met within a regulated project site.</td>
<td>• Can be difficult to quantify how much a developer should pay upfront for long-term maintenance costs that the municipality will bear.</td>
<td>• Capital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An in-lieu fee and/or credit trading system can be used to achieve additional retrofits and installation of GSI.</td>
<td>• May require agencies to modify the stormwater sections of their municipal codes to allow for the creation and/or use of the desired options/programs.</td>
<td>• O&M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multi-benefit opportunities of on-site GSI (e.g., traffic calming, heat island, bike lanes, etc.) will be lost when GSI is implemented at a different location.</td>
<td></td>
</tr>
<tr>
<td>Benefit Assessment and Community Facility Districts: Typically used to build and/or maintain facilities for the benefit of a specific area. Could be used for GSI improvements and/or services.</td>
<td>Established through new development projects as a condition of approval or through a balloting of all impacted property owners.</td>
<td>• Can be used to fund maintenance and operations.</td>
<td>• Requires property owners and/or businesses to agree that the need is present and that they should be (at least partially) responsible for funding it.</td>
<td>• Capital</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Administrative workload required to implement on small distributed/localized areas for a citywide program may not be cost-effective.</td>
<td>• O&M</td>
</tr>
<tr>
<td>Business Improvement Districts: Businesses and property owners tax themselves and manage the funds to build or maintain improvement such as GSI assets.</td>
<td>Can be set up and administered by the community members.</td>
<td>• Can provide sense of ownership and pride in the neighborhood when results are visible.</td>
<td>• Can burden businesses, property owners and others to the extent that they are unwilling to approve other funding measures.</td>
<td>• Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Capital</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• O&M</td>
</tr>
<tr>
<td>Development Impact Fees: paid by an applicant seeking approval of a development project. Could potentially be used to fund retrofits of adjacent public ROW with GSI as part of development or redevelopment projects.</td>
<td>Impact fee program must meet the requirements in California's Mitigation Fee Act.</td>
<td>• Cost for retrofitting streets can be leveraged through development activities.</td>
<td>• If a fee is found to not relate to the impact created by the development project, or to exceed the reasonable cost of providing the public service, then the fee may be declared a "special tax" subject to approval by a 2/3 majority of voters.</td>
<td>• Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cannot be used for O&M.</td>
<td>• Capital</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Revenue generated is fairly small and may not be sufficient for anything substantial.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 9.1: POTENTIAL GSI FUNDING STRATEGIES FOR THE CITY (CONTINUED...)

<table>
<thead>
<tr>
<th>SECTION/OVERVIEW/USE FOR GSI</th>
<th>REQUIREMENTS</th>
<th>PROS</th>
<th>CONS</th>
<th>APPLICABLE USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grants: one time funds that require an application from a funding agency. Could be used to plan, design and/or build GSI.</td>
<td>Application, reporting, coordination, and grant deliverables.</td>
<td>• Can fund programs or systems that would otherwise take up significant general fund revenues.</td>
<td>• Usually a one-time source of funding.</td>
<td></td>
</tr>
<tr>
<td>Integration with Transportation Projects: transportation funding is leveraged to cost-effectively include stormwater quality elements. Installation and maintenance of GSI facilities as part of integrated roadway programs</td>
<td>Make the connections between roadways and drainage systems that are green and complete, where allowed by conditions of the funding source.</td>
<td>• Roadway projects have more funding than stormwater programs and are generally more popular with the public.</td>
<td>• Roadways have been designed in certain ways with expectations of costs and purposes for decades.</td>
<td></td>
</tr>
<tr>
<td>Long Term Debt: Borrow money up-front against a dedicated stream of revenue projected over the life of the program. Can borrow money from future revenues to construct GSI systems in the present.</td>
<td>No voter approval. Municipality’s credit rating may be a factor.</td>
<td>• Well understood process of raising funds.</td>
<td>• Need a dedicated stream of revenue to pay off debt.</td>
<td></td>
</tr>
</tbody>
</table>

- **Planning**
- **Capital**
TABLE 9.1: POTENTIAL GSI FUNDING STRATEGIES FOR THE CITY (CONTINUED…)

<table>
<thead>
<tr>
<th>SECTION/OVERVIEW/USE FOR GSI</th>
<th>REQUIREMENTS</th>
<th>PROS</th>
<th>CONS</th>
<th>APPLICABLE USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public-Private Partnerships (P3s): agreements or contracts between a municipality and a private company to perform specific tasks. Can provide for the design, construction and maintenance of GSI systems over a long period.</td>
<td>Stormwater fee or other source of stable revenue over the life of the P3 contract.</td>
<td>• Leverages public funds while minimizing impacts to a municipality’s debt capacity.
 • Access to advanced technologies.
 • Improved asset management.
 • Draws on private sector expertise and financing.
 • Benefits local economic development and “green jobs.”
 • Relieves pressure on internal local government resources.
 • Implementation timeline is faster.</td>
<td>• Stormwater fee or other source of stable revenue over the life of the P3 contract is required.
 • Contracts out to the private sector the construction and maintenance of GSI systems, possibly removing some municipal control.</td>
<td>Planning</td>
</tr>
<tr>
<td>Realignment of Municipal Services: municipalities shift costs to programs where revenue can be increased such as sewer, water and trash. Could be used to plan, design, build and/or maintain GSI where there is a nexus between programs</td>
<td>Leverage funding from other departments for stormwater activities, or realign the stormwater activity to another department.</td>
<td>• A means of leveraging existing or new resources funded by non-balloted fee structures.</td>
<td>• Bureaucratic issues can be difficult to overcome.</td>
<td>Planning</td>
</tr>
<tr>
<td>Volunteer Programs: Provide community-based volunteer labor for specific tasks, such as helping build or maintain GSI facilities.</td>
<td>Administration, training, tracking and monitoring of volunteers.</td>
<td>• A low-cost source of labor.
 • Educational program for community.
 • Can build support for a stormwater fee or other funding source.</td>
<td>• Can be time intensive for staff to set up and administer.
 • May not be dependable in the long run.
 • Pal control depending on program specifics.</td>
<td>Planning</td>
</tr>
</tbody>
</table>
SECTION 10
OUTREACH AND EDUCATION
One of the most important steps in the development of the GSI Plan was educating and developing relationships with department staff, managers, residents and elected officials regarding the purposes and goals of GSI, the required elements of the GSI Plan, and steps needed to develop and implement the GSI Plan. Implementation success is much more likely if Watershed Protection staff obtains complete buy-in and commitment to the Plan and this new stormwater management approach from staff across City Departments as well as members of the public. Outreach and education tasks that Watershed Protection staff carried out beginning in fiscal year (FY) 15-16 and those that will continue through the GSI Plan development and implementation process are described below. A summary of these outreach efforts is outlined in Figure 10.1.

10.1 INTER-DEPARTMENTAL MEETINGS

Watershed Protection staff consistently met with various departments, in both small- and large-scale settings throughout this GSI planning process. These meetings focused on discussing GSI requirements, obtaining early and frequent feedback, and building connections to work together in GSI planning/design, implementation, maintenance, and monitoring strategies and requirements.

For smaller-scale meetings, Watershed Protection staff met with relevant staff and management from individual departments to discuss the GSI Plan as it related to that specific group in order to obtain their feedback and perspective. Obtaining this individualized feedback from City departments will ultimately ensure that the design,
implementation, and maintenance of GSI measures are carried out in an efficient and effective manner.

In addition to these individual meetings, Watershed Protection gathered a GSI Workgroup consisting of Department Managers and Supervisors that regularly met to help with the development and implementation of the GSI Plan. This Workgroup initially met in March 2017 to discuss development of this Framework for the GSI Plan and overall permit requirements. This Workgroup continued to meet during the GSI Plan development, with support from a consultant team, on a regular basis until March 2019, when the Plan was finalized. Watershed Protection staff also invited the Workgroup to provide feedback on the GSI Plan Scope of Work before it was sent out to potential consultants. Communication was consistently maintained via email outside of these meetings as well.

Throughout these small- and large-scale meetings, Watershed Protection staff asked for feedback regarding project opportunities to incorporate GSI. With assistance from Department staff and per MRP requirements, Watershed Protection staff analyzed both proposed and planned capital projects for opportunities to incorporate GSI before and during the development of the GSI Plan. To submit with the MRP Annual Report, Watershed Protection maintained a list of planned and constructed public projects that included GSI for the last three fiscal years (15-16, 16-17, and 17-18) and will continue to do so until the end of the permit term (approximately January 2020).

10.2 EXTERNAL COORDINATION EFFORTS

Watershed Protection staff conducted outreach efforts to the public through various committees and external partnerships. The City coordinates with SCVURPPP on a comprehensive outreach and education program. The key audiences of this program include: the general public (e.g. county-wide, and in the neighborhood or municipality where GSI projects are located); the development community (e.g. developers, engineers, landscape architects, and contractors); and elected officials. In addition to coordinating with SCVURPPP on their outreach and education program, City staff participates in SCVURPPP committees and workgroups that coordinate county-wide GSI activities through which Permittee representatives provide guidance and feedback on documents and other products. These documents and products (e.g. SCVURPPP C.3 GSI Handbook) are circulated through the City’s Workgroup when appropriate to encourage City staff to provide feedback and input that is then shared with SCVURPPP.

Watershed Protection staff has also provided several presentations to City committees made up of a diverse group of residents, including the Parks and Recreation Commission and the Planning and Transportation Commission, regarding the GSI Plan. In addition, various meetings have been held with the SWMOC in the past year to obtain guidance and direction during the development of the Plan. Meetings will continue during the implementation of the GSI Plan as well.

Public Works Engineering and Watershed Protection staff have also assisted with outreach by working with a local, non-profit organization, Grassroots Ecology, to develop small-scale GSI projects in local neighborhoods and educate residents about rain harvesting and stormwater measures.

10.3 TRAINING

Watershed Protection staff worked closely with SCVURPPP in both the development and training for the GSI Plan. City staff highly promoted the SCVURPPP training workshops involving the GSI Plan, and continues to encourage staff to attend upcoming trainings. A list of these workshops is outlined below:

- “Developing Your Green Infrastructure Program and Identifying Opportunities to Turn Gray to Green” on April 25, 2016, at the Campbell Community Center in Campbell, to educate municipal staff on the GSI requirements in the MRP. The workshop included presentations on developing and implementing municipal GSI Plans, review of public projects for identifying GSI opportunities, and a group exercise to review an example CIP project list for GSI opportunities. The workshop also included an optional field trip to the Hacienda Avenue Green Street in Campbell.

- “Low Impact Development and Green Infrastructure – Meeting New Requirements” on June 9, 2016, at the Mitchell Park Community Center in Palo Alto. The workshop covered basic C.3 training, updates on new requirements in the MRP, a panel on C.3 implementation, vendor presentations on pervious paving and stormwater treatment products, and an afternoon session on design, construction and maintenance considerations for pervious paving.
The workshop also included a tour of the LID features of the Mitchell Park Community Center.

- “Green Infrastructure Design and Implementation” on April 19, 2017, at the Quinlan Community Center in Cupertino. The workshop included presentations on GSI design guidelines; implementing GSI projects; integrating GSI into other public works projects such as bicycle and pedestrian facilities; overview of the forthcoming SCVURPPP GSI Handbook; and GSI landscape and maintenance considerations.

- “Green Stormwater Infrastructure Handbook Details: Pervious Pavement, Infiltration Trenches and Utility Protection and Coordination” on April 10, 2018, at the Mitchell Park Community Center in Palo Alto. The purpose of the workshop was to review and receive input on typical details compiled for the SCVURPPP GSI Handbook Part 2. The workshop included breakout sessions for group discussion and a panel of utility agency staff to discuss dealing with utility conflicts when designing and constructing GSI projects.

- “Green Stormwater Infrastructure Handbook Details: Stormwater Curb Extensions, Stormwater Planters and Stormwater Tree Well Filters” on April 24, 2018 at the Quinlan Community Center in Cupertino. The purpose of the workshop was to continue to review and receive input on typical details compiled for the SCVURPPP GSI Handbook Part 2. The workshop included breakout sessions for group discussion and special presentations on lessons learned on GSI construction projects and design of suspended pavement systems to enhance stormwater tree well filters.

In addition to training for City staff, SCVURPPP conducted a workshop on the SWRP and GSI project planning and implementation for local builders, developers, and engineering consultants on November 29, 2018. The workshop also included an overview of the SCVURPPP GSI Handbook. A total of 36 consultants attended the workshop. This training for the development community was part of the Proposition 1 planning grant that Valley Water received on behalf of SCVURPPP to develop the SWRP.

City staff provides training for residents as well. Public Works Engineering staff conducts annual workshops to educate and encourage residents to install stormwater harvesting media to reduce runoff, reduce pollutants, and utilize rainwater for non-potable use.

10.4 INFORMATIONAL

Watershed Protection staff provides outreach to both residents and elected officials through various formats, including utility bill inserts (UBIs), workshops, and factsheets. In both 2016 (Figure 10.2) and 2018 (Figure 10.3), the City developed and sent out new informational UBIs regarding GSI to approximately 26,000 residential accounts each year. The UBI in 2016 focused on GSI measures that are more applicable for installation on residential properties, whereas the UBI in 2018 focused on GSI measures that are more applicable for installation on public parcels.

WPG staff also developed a City webpage focused on GSI, where various types of GSI information is stored including, but not limited to, both UBIs, the GSI Framework, and, when completed, the accepted GSI Plan. Staff will continue to provide outreach materials to the general public regarding the GSI Plan and benefits, as well as available City rebates for residents to implement small GSI features on private property.

SCVURPPP has also supported the City and other municipalities by providing outreach on a County-wide scale. For the public, SCVURPPP developed a factsheet titled “Greening our Streets, Roads, and Parking Lots” that is posted on SCVURPPP’s Watershed Watch website, distributed at events, and used by member agencies to educate their residents. SCVURPPP also developed a set of informational graphics on types of GSI features and how they are integrated into neighborhoods. These can be accessed on the Watershed Watch Green Streets webpage¹ or from the City’s GSI webpage². This Green Streets webpage is promoted in Watershed Watch online advertisements to educate residents on LID/GSI features that they can integrate into their yards and garden components, and generate support for future green street projects. Residents can also access a map of all installed GSI features in the Santa Clara Valley.

For Elected Officials, SCVURPPP developed a factsheet titled “Integrating Green Stormwater Infrastructure into Public Streets, Roads, Buildings, and Parking Lots,” as well as a brief presentation for agencies’ use in conducting outreach to elected officials on GSI.

¹http://www.mywatershedwatch.org/residents/green-streets/
²https://www.cityofpaloalto.org/gsi
WHAT IF PALO ALTO STREETS WERE DESIGNED TO REDUCE STORM RUNOFF AND WATER POLLUTION WHILE ADDING BEAUTY?

In natural landscapes, rain soaks into the soil which slows the speed of runoff and filters pollutants. In urban areas, “impervious” surfaces such as roofs, concrete and asphalt interrupt this natural process. This increases flooding risks and pollution that washes into creeks and San Francisco Bay. “Green stormwater infrastructure” mimics nature by slowing, spreading, sinking and filtering runoff. The Municipal Regional Stormwater Permit requires Palo Alto and other Bay Area agencies to develop a Green Storm Water Infrastructure (GSI) Plan by September 30, 2019 and identify locations for GSI implementation.

What Green Storm Water Infrastructure Looks Like.

PERVIOUS concrete, asphalt, and pavers reduce runoff by letting rain percolate into soil below. These surfaces can be used in crosswalks, sidewalks, plazas, driveways, parking spaces and emergency vehicle access lanes.

BIORETENTION PLANTERS are areas landscaped with native plants and underlain with layers of soil and crushed rock. These planters filter and treat storm runoff that is directed into them.

RAINWATER CISTERN

Cisterns capture rainwater so that it can be used for irrigation.

Rainwater Cistern in Colorado Canyon Park, Beverly Hills. Photo courtesy of TreePeople.org

GREEN ROOFS are attractive and allow rainwater to soak into vegetation instead of running off the building. Green roofs also reduce heating and cooling costs and reduce heat-island effects.

Green roof installation at Mitchell Park Library, Palo Alto.

The City of Palo Alto offers commercial and residential rebates to install pervious surfaces, rain barrels and cisterns and green roofs. Visit cityofpaloalto.org/stormwater or call (650) 329-2295 to learn more.

PREVENTING STREET FLOODING relies on the smart design of City storm drain infrastructure and streetscapes that slow, spread and sink storm water runoff. The health of Palo Alto creeks depends on programs that keep litter, leaf debris, sewer overflows, and construction and industrial pollutants from entering our watershed.

Since 2005, Palo Alto’s Storm Water Management Program fees have funded seven high-priority storm drain pipeline and pump station capital improvement projects, a precedent-setting green infrastructure project (see reverse side), and more than 100 rebates to property owners for rainwater catchment, permeable driveways, and green roofs.

For more information visit cityofpaloalto.org/stormwaterfee or call (650) 329-2295.
GREEN STREETS IMPROVE COMMUNITIES

“Green Streets” slow, absorb and filter pollution in stormwater runoff and improve pedestrian and bicycle safety. Learn more about Green Streets and the City’s Green Stormwater Infrastructure Plan at cityofpaloalto.org/GSI or call 650-329-2122.

Stormwater Planters capture, filter, and slow roof runoff from disconnected downspouts.

Permeable Pavement reduces runoff by percolating rain into the soil below.

Tree Well Filters utilize suspended pavement systems so that roots can extend further; this allows trees to grow taller, provide more shade, and absorb more runoff.

Bioretention Areas filter runoff collected from hardscapes through drought-tolerant plants and well-draining soils. They can also provide traffic-calming features.

Funded by your monthly Stormwater Management Fee.
Watershed Protection staff was committed to inter-departmental collaboration during the development of both the GSI Framework as well as the Plan. Staff engaged various City Departments to create an all-inclusive GSI Plan through GSI Workgroup and small staff meetings and provided various documents and updates via email communication. In addition, staff had the opportunity to provide feedback at various stages of Plan drafts, including the 50 percent, 85 percent and final draft. Finally, the SWMOC was involved throughout the process, and local non-profit organizations and members of the public were provided access to copies of the 85 percent and final versions for review.

The City’s GSI Framework (or outline) was based on the framework template provided by SCVURPPP. The template outlined the steps to develop the GSI Plan and involve City staff in the process. The GSI Plan Framework was approved by the City Manager on June 30, 2017.

The development of the GSI Plan was carried out from Fall 2017 through Spring 2019. In addition to involvement and support of staff and the SWMOC, the Plan was also presented to the Parks and Recreation and Planning and Transportation Commissions in late 2018/early 2019. It was then presented to Council in May. Refer to Figure 11.1 for specific dates of this process.

FIGURE 11.1: GSI Plan Adoption Timeline
12.1 AUTHORITY TO IMPLEMENT GSI PLAN

As part of the Plan process, the City reviewed its existing ordinances and other legal mechanisms related to the implementation of MRP requirements in order to identify documents that need to be updated or modified to provide sufficient legal authority to implement the Plan and associated requirements and processes. In parallel with the development of the Plan, the City’s Municipal Code Chapter 16.11, titled Stormwater Compliance Management Program (previously titled Stormwater Pollution Prevention), was updated, both to provide this aforementioned authority and to ensure overall compliance with the MRP. The Municipal Code Chapter 16.11 update was adopted by City Council by July 1, 2019.

12.2 STORMWATER MUNICIPAL CODE UPDATE—A STEP TOWARD INCREASING SITE-SCALE LID

One of the updated requirements in Chapter 16.11 is in regards to LID, previously described in Section 1.3.3 as a management approach and set of practices that can reduce runoff and pollutant loadings by managing runoff as close to its source(s) as possible. The current MRP requires implementation of one LID practice on all project sites (including residential) that create or replace at least 2,500 square feet of impervious surface (collectively over the entire site). Per the MRP, non-single family residential projects that create or replace 10,000 square feet or more are required to use stormwater treatment measures (or GSI) to treat all runoff on-site (refer to Section 1.4). Thus, this updated requirement helps to reduce runoff from sites that create or replace less than 10,000 square feet of impervious surface. With the Chapter 16.11 update, the threshold has been decreased from 2,500 square feet to 2,000 square feet. Moreover, because single-family homes are not required by the MRP to implement GSI as are other project types, single-family residential projects that create or replace 2,500 square feet or more of impervious surface and are located on a parcel with area greater than 10,000 square feet or more will have to implement additional LID practices (four or more).

As an overall site design approach, LID can usually be applied as individual small-scale stormwater management practices (isolated LID practices) at less than the cost of GSI. Such site design measures include diverting runoff from sidewalks, driveways and parking lots to landscaping instead of to a drainage pathway leading to the curb and gutter, and, thus, the City’s storm drain system. This new requirement is a step forward for a new overall approach to treat stormwater runoff with a combination of gray and green infrastructure throughout the City. Refer to Municipal Code language for details.

1This is an estimate and will be updated if necessary.
2Ch. 16.11 is currently being updated, and it is anticipated that City Council will adopt the new language by July 2019.
SECTION 13

CHANGE OF CITY PERSPECTIVE—POLICIES AND PROGRAMS
An important aspect of GSI Plan implementation is a change of staff perspective regarding project management—considering sustainability, GSI and LID at the forefront of every design for every size construction and maintenance project. This adapted perspective has been regularly discussed with the SWMOC, Workgroup and other City staff meetings. This adjustment can become part of a standardized approach that includes a collaborative and transparent process, manageable assessment and tracking tools and guidance that meet MRP requirements, and adequate funding but that also supports the City’s structure and decision-making framework.

Moreover, per the MRP, the City is required to “adopt policies, ordinances, and/or other appropriate legal mechanisms to ensure implementation of the GSI Plan.” In addition to the legal changes mentioned in Section 12, policies can be established to direct the integration and complement of GSI in CIPs; street/sidewalk/alley construction and improvements; small- and large-scale bicycle and pedestrian safety projects; and operation and maintenance practices. This way, each public project can provide multiple benefits, increase asset values, meet sustainability goals, and support inter-departmental coordination. The following is a list of adjustments to the City approach and perspective to implement this Plan and meet MRP requirements. The list is not prioritized and will be phased-in following Plan acceptance by City Council.

13.1 UPDATES TO CITY PLANS AND PROGRAMS VIA A CITY MANAGER’S POLICY

Per the MRP (refer to Section 8 for permit language), the City must update or modify all of its planning documents to incorporate GSI requirements, particularly those that affect the future of any impervious surfaces on City property and in the right-of-way as well as the “gray” storm drain infrastructure. These updates must occur by the end of the Permit term, approximately the end of calendar year 2020. As noted in Section 8 as well as Appendix P, most documents are not anticipated to be updated within this time period. Thus, an interim policy will be adopted at the City Manager’s (CM) level to direct staff to conduct work responsibilities with GSI in mind. The application of the policy would vary according to Department responsibilities, from managing projects to maintaining assets.

The Sections below highlight key plans or programs that would most support the establishment of GSI throughout the City and examples of programs that would adjust its work per the policy. In response to the policy, each Department will update necessary documents and plans as resources allow with support from Watershed Protection staff.

13.1.1 OFFICE OF TRANSPORTATION’S BICYCLE & PEDESTRIAN TRANSPORTATION PLAN (BPTP)

The public right-of-way and associated infrastructure plays a crucial role in stormwater management in the City, as impervious surfaces (e.g., streets and sidewalks) directly convey runoff into the storm drain system without treatment. Integrating GSI and LID into this type of infrastructure can help filter roadway pollutants and litter, slow down the flow, and in some cases, infiltrate or capture and use rainwater. At minimum, even in areas with a high water table, runoff can still be slowed, reducing street ponding and flooding, and allowing the receiving storm drain system to better manage large storm events.

The Office of Transportation’s (OOT) BPTP supports various goals and requirements, including those of the Sustainability and Climate Action Plan and the state’s Complete Streets Act and regional Sustainable Communities Initiative. National Association of City Transportation Officials’ (NACTO) 2017 Urban Street Stormwater Guide builds upon prior complete street design publications and “provides practitioners, leaders, and other advocates with the tools to design streets for successful stormwater management, showing how GSI can bolster strategies to provide a safe and pleasant walking and biking experience, and safer streets for all users.” Consequently, adjusting the next BPTP update to focus on sustainable streets, rather than just complete streets, (the combination of the complete street approach with GSI) is the appropriate next step.

While an update of the BPTP will take longer than two years (the Permit deadline), the CM’s interim policy will guide future OOT projects1 to include GSI when feasible. A subsequent phase would involve a comprehensive BPTP update to be led by the OOT, which would establish street design standards that would not only consider pedestrian, bike and school safety, but also provide GSI and multiple benefits to highly-used transporation routes.

1The specifics of this policy are yet to be determined. Watershed Protection will work with OOT to determine next steps and the language and approach that supports both GSI Plan and OOT goals as well as MRP requirements.
13.1.2 DEPARTMENT OF PUBLIC WORKS, DIVISION OF ENGINEERING SERVICES (PWE)

Storm Drain Master Plan (SDMP)

The next update to the SDMP, which identifies and prioritizes (CIP) to meet a 10-year storm level of service by way of the City’s storm drain system, will not be conducted before the end of the Permit term. Meanwhile, the CM’s policy will direct PWE to consider the feasibility of integrating GSI in planned and proposed CIPs with the support of Watershed Protection. The future SDMP update should include an analysis of how the integration of both traditional and green stormwater infrastructure (GSI) can be designed to provide adequate capacity for all size storms, while considering the varying groundwater table depths throughout the City. The analysis can consider using GSI in areas that experience ponding to treat smaller storms (2-year storms) as well as in combination with larger pipe infrastructure (designed to convey 10-year storms). In addition, the update should compare upfront construction costs and short- and long-term maintenance costs of both types of infrastructure.

Street and Sidewalk Improvements Program (Program)

Since streets and associated impervious surfaces are direct stormwater runoff conduits to the storm drain system, and while there is a major focus to continuously provide City streets at excellent condition, it is a clear fit to integrate GSI into this Program. This will not only meet MRP requirements, but also support meeting multiple Departmental goals. Although streets may sometimes be improved at the surface, it is important to nevertheless establish a standard that each project will be assessed using GSI feasibility tools. Although a plan is not in place for this Program, the CM policy will guide how all future improvements are constructed and designed. This policy will be adjusted over time as-needed and as funding becomes available. Recommendations will also be included in the Sidewalk Assessment Study as well as resulting actions or responsive documents.

PWE Capital Improvement Projects (CIPs)

The CM’s policy will direct staff to evaluate CIPs for GSI opportunities during the project scoping process. In addition, this policy will direct staff to include in City Manager Reports a discussion of (1) the evaluation process and results; and (2) availability and need of funding for GSI construction and maintenance. This would be similar to how some jurisdictions have added “Environmental Impact” or “Sustainability Impact” to staff report templates as a mechanism for elected officials to more easily gauge the progress and implementation of sustainability plans and policies2.

Because funding can be a deterrent to full-scale GSI implementation, identification of leveraging opportunities is essential. For example, if a CIP is required to construct on-site GSI or stormwater treatment measures (otherwise known as MRP Provision C.3) at a particular location, the GSI measures can be moved off-site or expanded to treat additional paved surfaces on the right-of-way (i.e., the sidewalk or street), while still meeting on-site requirements. Watershed Protection will help conduct project coordination meetings to ensure these opportunities are identified early in the design process.

13.1.3 COMMUNITY SERVICES DEPARTMENT

Park Services

As with PWE projects, Park Services staff will also be directed to consider the integration of GSI in its construction and maintenance of CIPs. This would involve not only constructing GSI when funding resources allow, but also participating in assessing maintenance and monitoring best practices of GSI measures on properties for which Park Services staff is responsible. In addition, staff would participate in assessing and identifying the best equipment and materials that should be used during maintenance practices, such as an appropriate plant palette or an easy-to-maintain pervious material.

Education and Art in City Projects

Creating a theme around stormwater quality protection will increase public understanding and support for GSI projects and stormwater management around the City as well as increase water stewardship behaviors. Consequently, the City will create outreach products that will be placed at GSI locations on public property, where feasible. Products could include a new logo that identifies GSI or temporary or permanent educational signage.

In addition, the City will encourage and promote the creative use of stormwater for fountains, public display, education and public art. A required one percent (1%) set aside for public art from the City’s annual CIP budget and in coordination with the City’s Public Art Program could help support a project that was art-centered.

2SCVURPPP guidance memo titled “Mechanisms for Green Infrastructure Plan Implementation” (March 20, 2017) was used as a resource.
Figure 13.2 provides an example of an art project that has integrated stormwater for educational purposes.

In addition, Figure 13.1 provides an example of a roundabout in Riverside de Bridge, Los Angeles that utilizes public art to achieve stormwater management, native landscaping, and solar energy benefits. The traffic circle includes permeable pavers, bioretention, a 25,000-gallon rainwater cistern, and solar energy that powers the roundabout's reclaimed wastewater irrigation, lighting, and artwork in order to capture the stormwater from the adjacent bridge and roads; these stormwater measures ultimately allow the roundabout to capture and treat approximately 500,000 gallons of stormwater runoff. The central point of the roundabout includes nine egg-shaped stone sculptures that each features a different face of a randomly-chosen community member.³

FIGURE 13.1:

FIGURE 13.2:

Examples of Downspout Designs (top: “Downspout 101” designed by Buster Simpson; bottom is borrowed from the book "Artful Rainwater Design: Creative Ways to Manage Stormwater")

³The branching downspout is part of a public art project called "Growing Vine Street" that uses visual and provocative conveyance techniques to raise awareness of the stormwater flowing through the neighborhood.
SECTION 14

IMPLEMENTATION COMPONENTS
14.1 IMPLEMENTATION MANAGEMENT AND COORDINATION

As with the development of the Plan, Watershed Protection will serve as the main lead and coordinator of Plan implementation. Watershed Protection staff will carry out the following tasks as well as additional ones as they arise, while ensuring City staff are provided sufficient opportunities to provide feedback.

1. Conduct regular, collaborative GSI Workgroup meetings;
2. Create and manage subcommittees to meet various needs, such as the development of the Maintenance and Monitoring Manual;
3. Develop applicable tools, policies, guidelines and resources and their updates as needed;
4. Update City plans and policies;
5. Develop necessary evaluation metrics, tracking, and reporting tools;
6. Track and implement best practices; and
7. Perform outreach and education as feasible.

The purpose of the GSI Workgroup will be modified from Plan development phase to implementation. The Workgroup will serve as a platform to assess GSI opportunities; provide feedback on tools, policies, and other products; evaluate and track best practices and lessons learned; and collaborate among departments to create multi-benefit projects and leverage financial resources. Workgroup membership should include a minimum of one representative from each pertinent department and can break down into subcommittees for specialized responsibilities, such as maintenance.

14.2 EXTERNAL PROJECT OVERSIGHT

An external committee can provide a vehicle for residents and other members of the public to provide feedback and ideas throughout Plan implementation. The SWMOC served in that role during Plan development and can continue to do so during Plan implementation. Their responsibilities may include making recommendations to be researched by staff; providing feedback and funding approval on proposed projects; and reviewing proposed policies. If necessary, a separate group can be formed to provide additional support. This project oversight is not intended to replace the City’s already existing CIP review and approval process but will help fill the gap to discuss projects at a more detailed level or provide oversight before projects are ready for the existing review process.

14.3 FEASIBILITY ASSESSMENT

The following list addresses a proposed process to determine GSI feasibility for each City project on a parcel or in the right-of-way. The list provides an outline of what will ultimately serve as a standard operating procedure. It will be amended over time in response to feedback with changing City procedures and policies. Funding is not addressed in this Section.

- Project Manager holds meetings at the beginning of CIP scoping process to determine feasibility, placement and extent of GSI measures through the structure of the GSI Workgroup or one of its subcommittees. Revisit at particular design phases, such as 30, 50, 75 and 90 percent.
- GSI feasibility is evaluated using pre-determined criteria, mapping software, other tools, professional judgement, and staff collaboration. This standardized process will be vetted by the GSI Workgroup and others as needed.
- The current list of prioritized project locations in Section 4.1.2 will be used to assess opportunities as well, with this list being updated as new CIPs are planned. Once the list is assessed per the process in this Section, the City’s prioritized project locations will be included in the annual Adopted Capital Budget document when it is updated. The CIP plan is updated every year and is planned at 5-year intervals. Projects with a GSI component may be included in the CIP as funded or unfunded projects. An unfunded project’s inclusion in the annual Adopted Capital Budget document demonstrates that it is a City priority pending adequate funding.
- Watershed Protection staff identifies potential opportunities through regular plan review processes if not identified through a prior process.
- Based on separate funding opportunities, a preliminary budget may be created to determine financial feasibility.

14.4 TRACKING TOOLS

Practical tools will be available to evaluate the potential integration of GSI and to track results and costs. A checklist will be used to document the consideration of GSI and other Department objectives. This checklist
will be available via the City computer network, and within two years, will be available through cloud-based software. For those projects that will include GSI, a project checklist will be used to track the project from planning and Request for Proposal (RFP) development, through design, construction, and maintenance. Ultimately, tool and resources packages will be available for each project phase, all of which will be vetted by staff. Not only will projects be evaluated by these tools, but the results will also be distributed to stakeholders via an annual progress report to showcase GSI features within public projects. Information about GIS installations will be recorded into the City's GIS so that data can be viewed internally across departments and shared with other organizations as needed.

It should be noted that some tools will be developed at the County level in collaboration with other municipalities, and thus, timelines will not always be under City control. Furthermore, these tools will take time to develop due to limited City resources.

14.5 DETAILS AND SPECIFICATIONS

As mentioned previously in Section 7, the MRP requires the GSI Plan to include general design standards and specifications. As described, the City reviewed and provided feedback regarding example specifications presented in the SCVURPPP GSI Handbook (Parts 1 and 2). City staff will reference these examples and adapt them as needed for specific projects. In calendar year 2019, a consultant will be contracted to create City-specific standards and guidelines that will be used for City projects and for private projects, as appropriate. City staff may choose to pilot particular standards before finalizing them, especially to determine requirements for private property. This will also allow staff to standardize typical City work practices; agree on consistent designs that meet requirements of various City Departments; and assure consistency between various contractors.

14.6 MAINTENANCE AND MONITORING MANUAL

An item not included in MRP requirements is a Maintenance and Monitoring Manual for the GSI measures on City property and the right-of-way. This additional plan will document and evaluate current maintenance practices; identify and schedule maintenance and monitoring responsibilities; conduct effectiveness assessments using an adaptive management approach; and set performance goals. With a kickoff also planned for calendar year 2019, the plan's development will be carried out in collaboration with the City-specific standards and guidelines. During this process, staff will also identify funding needs and potential partnering opportunities with local organizations.

As part of an overall effort to improve the maintenance of GSI on City property, the landscape maintenance staff should be trained in GSI practices and Bay-Friendly practices as well as certified through the National Green Infrastructure Certification Program, which is likely to grow in the state of California in the coming year. Contractors who provide GSI maintenance services should also be trained and certified. Once the Maintenance and Monitoring Manual is completed, staff and contractors will be trained to carry out responsibilities outlined in the Manual. Figure 14.1 is an example of maintenance on a bioretention feature.
14.7 PILOT PROJECTS

14.7.1 CIP PILOTS

In support of the City’s vision, staff is exploring pilot projects on City-owned parcels that may influence where and how GSI is implemented in the future on City right-of-way and properties and potentially requirements and/or incentives for private projects. Currently, the City’s Urban Forestry soil volume requirements for streets are usually met by installing suspended pavement systems beneath trees (see Section 1.3.4) to hold the required amount of soil (in place of using structural soil, which does not support Urban Forestry goals). A stormwater treatment soil mix can be used in combination with the planting soil within the suspended pavement systems to create a larger area that can soak up additional runoff from the street, which would allow sites to surpass minimum stormwater requirements with systems that are already required by the City. Watershed Protection is coordinating with Urban Forestry to incorporate this pilot project within the design for the upcoming Public Safety Building to treat neighboring streets and sidewalks. Once implemented, the project would be evaluated via the tracking tools described in Section 14.3 to determine feasibility for other project applications.

The City will also consider pilot projects on a property identified as high priority per the process explained in Section 4.3, such as a City-owned parking lot. A project that can also meet other Department needs, such as Urban Forestry’s shade requirements, will be explored.

14.7.2 LOCAL PARTNERSHIPS AND VOLUNTEER PROGRAMS

Partnering with local organizations will allow the City to leverage its resources and obtain additional support to offset high maintenance costs. The City is contracting with a local group, Grassroots Ecology, to pilot a small program in which the group conducts non-technical maintenance tasks using significant plant restoration experience. This program will involve collaboration with Parks Maintenance Division staff to identify these tasks, with the approach to be based on the Maintenance and Monitoring Manual once completed. Finally, because this group’s primary experience is with native plant propagation and plantings, this project will investigate the use of native plants and pollinators to diversify plant palettes used in bioretention areas.

In addition, Grassroots Ecology has significant experience establishing volunteer programs and conducting volunteer-supported restoration projects and school and family educational activities (see Figure 14.2 for an example rain garden implemented by Grassroots Ecology). This pilot will also involve training volunteers to monitor and provide minor maintenance support in their neighborhoods. Volunteers will, at the same time, learn about the benefits of GSI and see a successful partnership in action.

The City will investigate partnering with additional local organizations in the future.

FIGURE 14.2: Hoover Park Rain Garden in Palo Alto Planted by Grassroots Ecology.

Source: https://www.grassrootsecology.org/demo-gardens
SECTION 15

NEXT STEPS—FURTHER EXPLORATION
This Section addresses items deemed necessary to ensure successful long-term implementation of this Plan that were identified by staff as needing further exploration beyond the Plan development period or through feedback from the public. The timeline for each item will vary based on available resources, but will be identified and integrated into an overall workplan in the coming months.

15.1 RIGHT-OF-WAY OPPORTUNITIES
This GSI Plan prioritizes City-owned locations but does not identify GSI project opportunities in the City’s right-of-way. As described in Section 1.3.2, the right-of-way, which includes streets, sidewalks, planting strips and alleys, offers various stormwater treatment options that provide numerous benefits, including social and environmental. A process will be determined to identify high priority areas throughout the City as well as how to determine project opportunities when staff is assessing street improvements and enhancements to bicycle and pedestrian features.

15.2 PROJECT COST TRACKING
The need to track, document and evaluate project costs is important to determine the economic impacts and benefits of GSI Plan implementation. This involves costs related to project planning, design, installation, operation and maintenance as well as replacement over time. In addition, going a step further to assess avoided costs, such as lowered irrigation costs due to a stormwater capture and reuse project, will help future funding decisions in regards to the use of a new stormwater management approach that uses GSI in complement with gray, or traditional, storm drain projects. Next steps will involve (1) evaluating cost tracking tools and the use of asset management systems; (2) establishing cost tracking procedures and data analysis methods; (3) determining which cost/benefit approach to use; (4) analyzing data over time that can be used to fortify project opportunity evaluations and budgeting; and (5) adapting systems over time.

15.3 PERFORMANCE
15.3.1 PERFORMANCE METRICS
There is a clear need to determine what type of performance metric(s) should be used to establish appropriate goals and assess the effectiveness of GSI Plan implementation over time. Various metrics are being used across the country, including acreage or percentage of impervious surface reduction; stormwater runoff volume reduction; amount of “greened” acres (those acres treated by GSI); or particular water quality objectives. Additional research needs to be conducted to determine the best fit for the City considering the availability of data, the cost of obtaining additional data and conducting a baseline analysis, and the work necessary to regularly conduct future analyses to evaluate progress over time.

15.3.2 RATING TOOLS
Evaluating the performance of the design, construction and maintenance of projects can help provide transparency to the use of public funds and encourages staff to continuously improve their effectiveness. Using rating tools, such as the Envision Sustainable Infrastructure Card or the Greenroads Rating System Program, will help evaluate, verify, and document performance according to Department goals and strategies. Figure 15.1 provides the Greenroads evaluation summary for the West Hacienda Avenue project in the City of Campbell.

In order to holistically manage complex projects that can meet multiple objectives of various Departments, support the City’s Comprehensive and Sustainability Plans (among others), and provide accurate, data-supported results to the public, these type of tools should be evaluated to choose which best assesses performance of varying scales of GSI projects. Such a tool can be integrated into the GSI evaluation process and follow projects through the design, construction and maintenance phases.

15.4 FUNDING ANALYSIS
A common concern for a municipal plan that establishes new requirements, particularly leading to new projects, is funding for both construction and maintenance. Funding solutions for both need to be explored and may need to be addressed separately, with some taking more time to establish. Additional work needs to be carried out to alleviate this concern, and a high priority item post-acceptance of this Plan is to conduct a comprehensive funding needs and opportunity analysis for short- and long-term needs. This analysis will increase our understanding

Source: https://www.greenroads.org/141/92/hacienda-green-street-improvements.html
of both construction and maintenance costs for City facilities as well as identify and prioritize funding opportunities. The following lists potential future solutions to provide stakeholders with a sense of the direction the City may choose to go:

- A program that would allow private developers to provide a financial contribution equal to a pre-determined amount toward public GSI in-lieu of building on-site GSI. This program could be triggered, for example, if a private site cannot construct on-site GSI due to physical constraints or if a CIP is being planned nearby where GSI could treat a larger area.

- Benefit or Improvement Districts for commercial or residential areas that would allow assessment fees to be directed toward installation and maintenance of GSI within the boundary of said district. For downtown Palo Alto, which is already designated as a Business Improvement District, amendments could be made to include GSI. For residential areas, a Green (Stormwater Infrastructure) Benefit District could be created to fund and maintain GSI and other landscaping located in the right-of-way within that area. Local examples include the Dogpatch and Northwest Potrero Hill Districts in the City of San Francisco.

- Pilot private-public partnerships in which the cost of construction and/or maintenance is shared between the two parties. This could involve various combinations of responsibilities, with maintenance taken on solely by a private contractor at a lower rate than staff or an influx of construction in an area where a larger development is taking place.

15.5 PRIVATE PROPERTY OPPORTUNITIES

This GSI Plan focuses on public property under the jurisdiction of the City. However, to increase the impact of GSI implementation City-wide, it is imperative to consider the establishment of additional requirements for GSI on private property; creating incentives that will reward private property owners for installing and maintaining GSI; and providing guidance regarding implementation of LID on smaller properties that may not be required to install GSI. Furthermore, the City will investigate opportunities to encourage private property owners to install and maintain GSI in the public right-of-way.

Through the update of Chapter 16.11 of the Municipal Code (as mentioned in Section 12), additional redeveloped sites may be required to install on-site LID, which can lead to a greater number of small-scale stormwater management systems throughout the City. LID will keep stormwater runoff on-site, while providing more affordable options to engineered treatment measures. New construction or redevelopment provides an ideal opportunity to manage on-site stormwater runoff differently by site design.

FIGURE 15.1: Greenroads Evaluation – West Hacienda Avenue Green Street (City of Campbell)

Source: City of Campbell
approaches, including, but not limited to, minimizing impervious surfaces, grading walkways or driveways to drain to nearby landscaping instead of the sidewalk or street, or by taking care to not compact soils that will be planted post-construction.

Even if a private property owner may not be able to redesign a site, stormwater runoff may be captured and sometimes used using LID approaches (Figures 15.2 – 15.4). For example, property could be designed or retrofitted so that downspouts are “disconnected” from the street and storm drain system. This could be done by diverting roof runoff to one or a combination of the items below:

- An existing, non-modified landscaped area, particularly if several downspouts can divert smaller amounts of roof runoff across the property;
- A retrofitted landscaped area that may be amended with soil and/or a subsurface layer with base rock for increased infiltration or dug down to have a depression for more water-holding capacity (sometimes called a “rain garden”); and/or
- An above- or below-ground rain barrel or cistern that can store runoff to be used.

Another way that a site may be retrofitted is to construct a depressed landscaped area, but relatively shallow, with permeable soils and drought-tolerant and/or native plants. Planting trees in the outer boundaries can also help with water uptake. In addition to capturing roof runoff, or simply rain, these rain gardens (when appropriately sized) can capture runoff from walkways, sidewalks, driveways and small parking lots if these impervious areas are graded to drain to them, or in some cases, piped underground to them. These rain gardens are different from bioretention or biotreatment areas/planters, as they do not need to be engineered or designed to treat a particular amount of runoff. Finally, property owners may also choose to use pervious materials to construct walkways, driveways or other impervious surfaces, which allow rain to infiltrate through the material to the underlying soil.

Some private property owners may choose to install GSI measures (even when not required) in addition to some of the approaches mentioned in this Section. General descriptions are provided in Section 1.3. Overall, it is important for property owners to not

![Figure 15.2: Examples of Rain Barrels Collecting Roof Runoff](source: http://craftspost.com/3-top-diy-rain-barrel-ideas-gather-water-garden/)

![Source: https://backyardville.com/why-you-should-add-a-rain-barrel-to-your-yard/](source: https://backyardville.com/why-you-should-add-a-rain-barrel-to-your-yard/)

NOTE: The following information should not be used as detailed guidance, but rather as a starting point to rethink how stormwater can be generally managed on private properties, whether residential or non-residential. Constraints such as depth to groundwater, soil type and/or location of utilities should be considered and must be evaluated on a case-by-case basis.
only consider design and construction costs, but also maintenance requirements during the decision-making process.

GSI may be necessary for pollutant removal on large commercial and industrial sites, and to obtain multiple benefits throughout the City. Therefore, post-acceptance of the Plan, it would be a logical step to investigate other options to increase private property GSI. This Plan does not propose new requirements, but rather it sets the stage for increasing the scale of GSI implementation throughout the City. The following lists potential options for consideration that could increase the amount of GSI on private properties; however, additional options will be evaluated.

FIGURE 15.3: Examples of Roof Runoff Diverted to Site-Scale Landscaped Areas/Planters

Source: https://www.architerradesigns.com/landscape-planters-rooftop-installation-blog/2019/2/23/bioretention-planters

FIGURE 15.4: Examples of Diversion of Surface Runoff from Impervious Areas to Rain Gardens in a Neighborhood and Small Parking Lot

Source: https://www.architerradesigns.com/landscape-planters-rooftop-installation-blog/2019/2/23/bioretention-planters

Source: https://horsleywitten.com/

Source: https://blazingstargardens.com/
• Decreasing the size threshold trigger for required stormwater treatment (Provision C.3 as described in Section 1.4.2).

• Leveraging current requirements: The City’s Urban Forestry soil volume requirement for street trees is usually met by using suspended pavement systems placed beneath the trees (see Section 1.3.4) to hold the required amount of soil. A stormwater treatment soil mix can be used in combination with the planting soil to create a larger area that can soak up additional runoff from the street. Thus, a project can treat additional paved surfaces beyond the required parcel area for minimal additional construction costs. Maintenance responsibilities will need to be determined, and a legal agreement that includes the Maintenance and Monitoring Manual approach will need to be established.

• Providing incentives, such as expedited permitting and/or reduced permit fees, for projects that install GSI beyond the requirement. For example, the project could include treating a particular amount of public right-of-way and taking on maintenance of the features based on an agreement (as described above). A reduced permit fee could offset a percentage of the City’s estimated long-term maintenance costs. Moreover, the property owner may be able to forego installing on-site treatment, if the site was plumbed to the right-of-way treatment measure.

• Requiring new development projects that meet a certain size threshold, and that are already required to construct new right-of-way features, to also install GSI measures. An agreement would outline maintenance and replacement of features over time.

• Explore collaboration opportunities with both Stanford and PAUSD to integrate GSI throughout their jurisdictions (as described in Section 4.1).
REFERENCES

City of Palo Alto Department of Public Works Strategic Plan FY 2016-18. Prepared by the City of Palo Alto.

APPENDIX A: Proposed Bikeways¹ (per Bicycle and Pedestrian Transportation Plan, 2012)

¹Caltrans defines the bikeways as the following: Class I bikeways are facilities with exclusive right-of-way for bicyclists and pedestrians; Class II bikeways are bike lanes established along streets and are defined by pavement striping and signage to delineate a portion of a roadway for bicycle travel; Class III bikeways designate a preferred route for bicyclists on streets shared with motor traffic not served by dedicated bikeways to provide continuity to the bikeway network; Class IV bikeways are for exclusive use of bicycles, physically separated from motor traffic with a vertical feature.
APPENDIX B²: Historic Land Use in 1980

This map is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review, consult, and/or field verify the primary data and information sources to determine the usability of the information.
Key Development Areas are defined in Section 4.3.1.
APPENDIX D: Localized Ponding\(^5\) and FEMA Flood Zone Designations\(^6\)

1This map is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review, consult, and/or field verify the primary data and information sources to determine the usability of the information.

2Localized ponding is defined in Section 1.3.1. Additional areas may be identified in the future.

3FEMA flood zone designations are defined in Section 4.3.1.
Trash generation designations are defined in Section 4.3.1.
APPENDIX F8: Parcel Slope

This map is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review, consult, and/or field verify the primary data and information sources to determine the usability of the information.
APPENDIX G: Contaminated Groundwater Plume Approximate Limits

This map is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review, consult, and/or field verify the primary data and information sources to determine the usability of the information.

See Section 2.3 for more information.
APPENDIX H: Existing City-Owned GSI Locations

Legend

City-Owned GSI Projects

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018

See Section 1.3.5 for more information.
APPENDIX I: Quadrant Reference Map for City-Owned Properties and Proposed/Planned Projects Prioritized by Location

Legend
- High
- Medium
- Low

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018
APPENDIX J: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 1A

[Map showing various properties and projects with legend indicating high, medium, and low priorities.]

Legend:
- High
- Medium
- Low
- Creek

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018

Legend:
- High
- Medium
- Low
- Creek

APPENDIX 103
APPENDIX K: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 1B
APPENDIX L: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 2

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018

Legend
- High
- Medium
- Low
- Creek

High
Medium
Low
Creek

Legend:
- High
- Medium
- Low

Creek
APPENDIX M: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 3

Legend
- High
- Medium
- Low
- Creek

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018
APPENDIX N: City-Owned Properties and Proposed/Planned Projects Prioritized by Location—Quadrant 4

Legend

- High
- Medium
- Low
- Creek

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018

Legend

High
Medium
Low
Creek

Stanford University

Bol Park

Werry Park
Weisshaar Park

Utilities Easement

Boulware Park

Baron Creek, Los Robles Ave

Foothill Expressway

Maladero Creek

Sensing Unit/Hillview Relieve Valve

Bol Park

Foothills Park

Esther Clark Park

Pearson Arastradero Parking Lot

City of Los Altos Hills

Source: Data obtained from Santa Clara County, San Mateo County, City of Palo Alto
Date: November 2018
APPENDIX O: City-Owned Prioritized Project Location List

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Location</th>
<th>Total</th>
<th>Prioritzation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Q (High/Alma North Garage)</td>
<td>430 High Street</td>
<td>32</td>
<td>High</td>
</tr>
<tr>
<td>Public Safety Building (Parking Lot 6)</td>
<td>Parking Lot C-6 (250 Sherman Avenue)</td>
<td>32</td>
<td>High</td>
</tr>
<tr>
<td>Quarry Road Improvements and Transit Center Access</td>
<td>Quarry Road between El Camino Real and Welch Road</td>
<td>32</td>
<td>High</td>
</tr>
<tr>
<td>Embarcadero Rd at El Camino Real Improvements</td>
<td>Embarcadero Road and El Camino Real</td>
<td>31</td>
<td>High</td>
</tr>
<tr>
<td>Churchill Avenue Enhanced Bikeway</td>
<td>El Camino Real and Churchill Avenue</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Fire Station 1 (University Park Fire Station)</td>
<td>301 Alma Street</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Fire Station 4 and Transfer Station</td>
<td>3600 Middlefield Road</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Lot D (Downtown Parking Garage)</td>
<td>375 Hamilton Avenue</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Lot N (Emerson/Hamilton Lot)</td>
<td>501 Emerson Street</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Mitchell Park</td>
<td>600 East Meadow Drive</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Peers Park</td>
<td>1899 Park Boulevard</td>
<td>30</td>
<td>High</td>
</tr>
<tr>
<td>Cogswell Plaza and La Comida (includes Parking Lot C)</td>
<td>256 Lytton Avenue</td>
<td>29</td>
<td>High</td>
</tr>
<tr>
<td>El Camino Median Landscape Improvements</td>
<td>City limits - University Ave. & Page Mill - Arastradero.</td>
<td>29</td>
<td>High</td>
</tr>
<tr>
<td>Lot O (Emerson/High Lot)</td>
<td>430 Emerson Street</td>
<td>29</td>
<td>High</td>
</tr>
<tr>
<td>Lot S/L (Bryant/Lytton Garage)</td>
<td>445 Bryant Street</td>
<td>29</td>
<td>High</td>
</tr>
<tr>
<td>Lot T (Lytton/Kipling Lot)</td>
<td>434 Lytton Avenue</td>
<td>29</td>
<td>High</td>
</tr>
<tr>
<td>250 University Avenue Garage</td>
<td>250 University Avenue</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>City Hall/King Plaza and Police Department</td>
<td>250 Hamilton Avenue</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Colorado Pump Station Integration with Matadero Pump Station</td>
<td>Colorado Avenue and W Bayshore Road</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Downtown Library</td>
<td>270 Forest Avenue</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Gamble Garden Center</td>
<td>1431 Waverley Street</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Heritage Park and Palo Alto History Museum.</td>
<td>300 Homer Avenue (bounded by Waverley, Homer, and Bryant)</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Hoover Park</td>
<td>2901 Cowper Street</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lawn Bowling Green Club Park</td>
<td>474 Embarcadero Road</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lot A (Emerson/Lytton Lot)</td>
<td>437 Emerson Street</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lot H (Cowper/Hamilton Lot)</td>
<td>457 Hamilton Avenue</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lot K (Lytton/Waverley Lot)</td>
<td>351 Lytton Avenue</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lot P (High/Hamilton Lot)</td>
<td>561 Hamilton Street</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Lot R (High/Alma South Garage)</td>
<td>Between 528 High Street and Alma Street</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Rinconada Park</td>
<td>777 Embarcadero Road (between Hopkins Ave, Middlefield Rd, and Embarcadero Rd)</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Robles Park</td>
<td>4116 Park Boulevard</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>Tennis Courts near Rinconada Library</td>
<td>777 Embarcadero Road</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>West Bayshore Pump Station</td>
<td>West Bayshore Road near Highway 101 to Adobe Creek outfall</td>
<td>28</td>
<td>High</td>
</tr>
<tr>
<td>West Bayshore Road to Adobe Creek Storm Drain Capacity Upgrade</td>
<td>3480 W Bayshore Road to Adobe Creek outfall</td>
<td>28</td>
<td>High</td>
</tr>
</tbody>
</table>
APPENDIX O: City-Owned Prioritized Project Location List (continued)

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Location</th>
<th>Total</th>
<th>Prioritization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bol Park</td>
<td>3590 Laguna Avenue Between Roble Ridge Rd., Matadero Ave. and Laguna Ave.</td>
<td>27</td>
<td>Medium</td>
</tr>
<tr>
<td>Colorado Receiving Station</td>
<td>1080 Colorado (by Matadero Canal)</td>
<td>27</td>
<td>Medium</td>
</tr>
<tr>
<td>El Camino Real Pedestrian Safety and Streetscape Project</td>
<td>2962 Page Mill Road</td>
<td>27</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot F (Florence/Lytton Lot)</td>
<td>425 Florence Street</td>
<td>27</td>
<td>Medium</td>
</tr>
<tr>
<td>Briones Park and Fire Station 5 (same parcel number)</td>
<td>600 Arastradero Road</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Corporation Way/East Bayshore Road Pump Station</td>
<td>Corporation Way and East Bayshore Road</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Greer Park</td>
<td>1098 Amarillo Avenue</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot 7 (California Ave Area Parking Garage)</td>
<td>350 Sherman Avenue</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot 8 (Sherman Ash)</td>
<td>448 Sherman Avenue</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot E (Gilman/Bryant Lot)</td>
<td>642 Gilman Street</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot G (Gilman/Waverley Lot)</td>
<td>671 Gilman Street</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Museum of American Heritage</td>
<td>351 Homer Avenue</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Terman Park</td>
<td>655 Arastradero Road</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Weisshaar Park</td>
<td>2298 Dartmouth Street</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Werry Park</td>
<td>2100 Dartmouth Street between College and Stanford Avenues</td>
<td>26</td>
<td>Medium</td>
</tr>
<tr>
<td>Clover Leaf ROW</td>
<td>200 San Antonio Road and Alma Street</td>
<td>25</td>
<td>Medium</td>
</tr>
<tr>
<td>East Meadow Circle Storm Drain Connection to Adobe Creek Pump Station</td>
<td>1034 through 1098 E Meadow Circle</td>
<td>25</td>
<td>Medium</td>
</tr>
<tr>
<td>Fire Station 2 (Mayfield)</td>
<td>2675 Hanover Street</td>
<td>25</td>
<td>Medium</td>
</tr>
<tr>
<td>Johnson Park</td>
<td>251 Waverley Street</td>
<td>25</td>
<td>Medium</td>
</tr>
<tr>
<td>Winter Lodge/ Swim Center</td>
<td>3009 Middlefield Road</td>
<td>25</td>
<td>Medium</td>
</tr>
<tr>
<td>Cameron Park</td>
<td>2101 Wellesley Street</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Center Drive Storm Drain Capacity Upgrade</td>
<td>Center Drive from Channing Avenue to Hamilton Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Eleanor Pardee Park</td>
<td>851 Center Drive</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Esther Clark Park</td>
<td>Old Adobe Road</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Fabian Way Storm Drain Capacity Upgrade</td>
<td>3798 - 3890 Fabian Way</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot 3 (Ted Thompson Parking Garage)</td>
<td>275 Cambridge Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot 4 (Cambridge/Birch)</td>
<td>407 Cambridge Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot 5 (Cambridge E/Garage)</td>
<td>451 Cambridge Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot K (Lytton/Waverley Lot)</td>
<td>364 Bryant Street</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lot N (Emerson/Ramona Lot)</td>
<td>Between 539 Emerson and Lane 12 West (behind Lytton Plaza)</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Lytton Plaza</td>
<td>Emerson Street and University Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Maybell Substation</td>
<td>527 Maybell Avenue</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Municipal Service Center</td>
<td>3201 E Bayshore Road</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Palo Alto Tower Well</td>
<td>201 Alma Street</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Park Substation</td>
<td>3291 Park Boulevard</td>
<td>24</td>
<td>Medium</td>
</tr>
<tr>
<td>Ventura Park</td>
<td>3990 Ventura Court</td>
<td>24</td>
<td>Medium</td>
</tr>
</tbody>
</table>
APPENDIX O: City-Owned Prioritized Project Location List (continued)

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Location</th>
<th>Total</th>
<th>Prioritization</th>
</tr>
</thead>
<tbody>
<tr>
<td>6" Water Main</td>
<td>4028 Park Boulevard</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Adobe Creek Substation</td>
<td>1157 East Meadow Road</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Baylands</td>
<td>2375 Embarcadero Road</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Byxbee Park Completion</td>
<td>2500 Embarcadero Road</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Foothills Park</td>
<td>1530 Arastradero Road</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Hopkins Creekside Park</td>
<td>Palo Alto Avenue from Emerson Street to Marlowe Street</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Kellogg Parkette</td>
<td>Waverley and Embarcadero (next to Gamble Garden)</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Monroe Park</td>
<td>375 Monroe Drive</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Parkette Area at Alma Street</td>
<td>103 Embarcadero Road</td>
<td>23</td>
<td>Medium</td>
</tr>
<tr>
<td>Bouliware Park</td>
<td>401 Fernando Avenue</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>East Charleston Road to Adobe Creek Storm Drain Capacity Upgrade</td>
<td>E Charleston Road to Adobe Creek (between Fabian Way and Louis Road)</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Henry W. Seale Park</td>
<td>3100 Stockton Place</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Jerry Bowden Park</td>
<td>2380 High Street</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Lot 1 (Cambridge/Park)</td>
<td>270 Cambridge Avenue</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Lot 2 (Cambridge/Birch)</td>
<td>366 Cambridge Avenue</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Lot 9</td>
<td>2320 Birch Street</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Midtown Court Parking Lot</td>
<td>2700 Midtown Court</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Portion of Golf Course/Baylands Athletic Center</td>
<td>1900 Geng Road</td>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>Adobe Creek Pump Station</td>
<td>1198 E Meadow Drive</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>East Meadow Drive to Adobe Creek Pump Station Storm Drain Capacity Upgrade</td>
<td>East Meadow Drive between E Meadow Circle and Adobe Creek</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Hamilton Ave Storm Drain Capacity Upgrade</td>
<td>Hamilton Ave from Rhodes Drive through Center Drive</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Louis Road Overflow Storm Drain</td>
<td>Louis Road (Seale-Wooster Canal to Matadero Creek)</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Louis Road SD Capacity Upgrade</td>
<td>Louis Road (Embarcadero Road to Seale-Wooster Canal)</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Pearson Arastradero Preserve Parking Lot Improvement</td>
<td>1530 Arastradero Road</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Ramos Park</td>
<td>800 East Meadow Drive</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Scott Street Mini Park</td>
<td>End of Scott Street at the intersection of Scott Street and Addison Avenue</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Sensing Unit/Hillview Relieve Valve</td>
<td>3402 Hillview Avenue</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Sterling Canal</td>
<td>3101 Maddux Drive thru 3298 Maddux Drive</td>
<td>21</td>
<td>Low</td>
</tr>
<tr>
<td>Airport</td>
<td>1925 Embarcadero Road</td>
<td>20</td>
<td>Low</td>
</tr>
<tr>
<td>Alma Substation (Current land use is an apartment building)</td>
<td>801 Alma Street</td>
<td>20</td>
<td>Low</td>
</tr>
<tr>
<td>Los Altos Treatment Plant</td>
<td>1237 N San Antonio Road</td>
<td>20</td>
<td>Low</td>
</tr>
<tr>
<td>Palo Alto Community Child Care</td>
<td>3990 Ventura Court</td>
<td>20</td>
<td>Low</td>
</tr>
<tr>
<td>Sarah Wallis Park</td>
<td>202 Ash Street</td>
<td>20</td>
<td>Low</td>
</tr>
<tr>
<td>College Terrace Children Center and Library, and Mayfield Park</td>
<td>2300 Wellesley Street</td>
<td>19</td>
<td>Low</td>
</tr>
</tbody>
</table>
APPENDIX O: City-Owned Prioritized Project Location List (continued)

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Location</th>
<th>Total</th>
<th>Prioritzation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loma Verde Ave Storm Drain Capacity Upgrades</td>
<td>Loma Verde Ave (Louis Road to Sterling Canal) 901 Loma Verde Ave - 1100 Loma Verde Ave</td>
<td>19</td>
<td>Low</td>
</tr>
<tr>
<td>Matadero Creek</td>
<td>Barron Park neighborhood</td>
<td>19</td>
<td>Low</td>
</tr>
<tr>
<td>20' Wide Footpath/Bike Path at Baylands</td>
<td>2525 E Bayshore Road</td>
<td>18</td>
<td>Low</td>
</tr>
<tr>
<td>Dealership Parking Lot</td>
<td></td>
<td>17</td>
<td>Low</td>
</tr>
<tr>
<td>Landscape Area at Oregon Expressway and Alma Street</td>
<td>103 Colorado (Between Oregon and Colorado)</td>
<td>17</td>
<td>Low</td>
</tr>
<tr>
<td>Regional Water Quality Control Plant</td>
<td>2504 Embarcadero Way</td>
<td>17</td>
<td>Low</td>
</tr>
<tr>
<td>Strip of Land by San Francisquito Creek dividing Palo Alto and Menlo Park</td>
<td>Riparian buffer along San Francisquito Creek that runs between Emerson Street and Marlowe Street</td>
<td>16</td>
<td>Low</td>
</tr>
<tr>
<td>Residential drive-thru</td>
<td>2297 Williams Street</td>
<td>15</td>
<td>Low</td>
</tr>
<tr>
<td>Strip of Land by San Francisquito Creek dividing Palo Alto and Menlo Park</td>
<td>Riparian buffer along San Francisquito Creek that runs between Emerson Street and Marlowe Street</td>
<td>16</td>
<td>Low</td>
</tr>
<tr>
<td>Residential drive-thru</td>
<td>2297 Williams Street</td>
<td>15</td>
<td>Low</td>
</tr>
</tbody>
</table>
As described in Section 8.0, the City’s planning documents were reviewed to determine to what extent these included language to support GSI and if any changes were needed for the City to effectively implement the GSI Plan. The City determined that none of the reviewed documents prevent the implementation of GSI projects within the City. Moreover, several planning documents already contain some language to support the GSI Plan. However, various plans need to be better aligned with the GSI Plan to require the integration of GSI and use of the various tools, specifications and guidelines addressed in this Plan and through subsequent implementation. The following sections provide a brief discussion for each planning document that was reviewed for GSI integration, including examples of language supporting GSI in these documents where applicable. Additional examples of GSI-related language can be found in references such as SCVURPPP’s Model Green Infrastructure Language for Incorporation into Municipal Plans (2016).

A workplan for future integration of GSI language is provided in Section 8.3 of the main document. Certain documents and plans will be updated in calendar years 2019-2020. This section will be updated once those documents are finalized.

BICYCLE AND PEDESTRIAN TRANSPORTATION PLAN (2012)

The Bicycle and Pedestrian Transportation Plan (BPTP) contains the policy vision, design guidance, and specific recommendations to increase walking and biking rates to help achieve local and regional targets for accommodating new growth, maintaining mobility, and reducing overall environmental impacts. It was updated in July 2012 and includes limited language regarding the incorporation of GSI into transportation projects, namely:

Section 2.2 Strategic Guiding Principles: At the project scale, seek integrated design solutions that achieve multiple benefits (e.g., a sidewalk extension that also provides landscaping or stormwater management opportunities) and avoid or improve abrupt transitions in the public realm. The next update will include language that will integrate the GSI Plan appropriately. Until the next update occurs, a policy will be established to ensure staff adequately considers GSI in the future. Example language that can be considered for this policy is provided below:

- Encourage and support the inclusion of green stormwater infrastructure in the design of pedestrian and bicycle facilities. GSI can provide multiple benefits such as stormwater treatment, beautification and can be efficiently incorporated into bicycle and pedestrian projects.
- Regularly coordinate scopes and timelines of roadway maintenance, GSI implementation, utility, and private development activities to identify potential collaboration opportunities on the bikeway network and within priority pedestrian areas.

CITY PARKS SUSTAINABILITY REVIEW (2014-2015)

The Parks Sustainability Review identifies opportunities to increase sustainable and resource-saving practices associated with the operation and management of parks and open space, as well as recreational facilities within the City. Like the Parks, Trails, Natural Open Space and Recreation Master Plan (Parks Master Plan), the City Parks Sustainability Review document already includes adequate references to support GSI implementation, namely:

-Introduction and Background
 - Water Conservation and Quality
- Policies and actions that promote activities that support stormwater capture...are considered to further sustainability goals.
- Water Conservation and Quality
 - Item 6: Adopt a planting approach that focuses on transitioning to native and/or drought-tolerant plants and also provides ecological services such as improving water quality.
 - Item 9: Design stormwater improvements throughout the park system to incorporate LID systems to treat pollutants in stormwater runoff (e.g., through rain gardens, bioretention areas and living roof systems).
- Site and implement treatment wetlands where they will provide the highest return on investment (e.g., adjacent to creeks or other wetlands).
• Naturalize creek edges adjacent to parks and open space where feasible.
 o Item 10: Increase the use of permeable pavements in parking lots with filtration systems for pollutants.

• Climate Change and Air Quality
 o Item 3.b: Use pervious surfaces in place of pavement where feasible.
 o Item 4.b: Design adaptive green infrastructure along creeks where increasingly unpredictable levels of precipitation and sea level rise will impact adjacent properties and ecosystems.

The language in the City Parks Sustainability Review will be revised as part of future updates to directly relate to the GSI Plan.

COMPREHENSIVE PLAN (2017)

The City of Palo Alto’s Comprehensive Plan strives to build a coherent vision of the City’s future with input from its stakeholders. It integrates the aspirations of the City’s residents, businesses, neighborhoods and officials into a bold strategy for managing change. The Comprehensive Plan is the primary tool for guiding the future development of the City. The Comprehensive Plan provides a guide for making planning and development choices by describing long-term goals for the City’s future as well as policies to guide day-to-day decisions (p. I-1). The Comprehensive Plan was updated in November 2017 and includes language to promote GSI and support the GSI Plan. For example, page I-3 of the introduction describes the City’s commitment to sustainable design:

• Protecting and Sustaining the Natural Environment
 o With most of the Baylands and foothills already protected as permanent open space, the Comprehensive Plan’s focus turns inward to the fragile ecosystems within developed portions of the City. The natural infrastructure, which includes a network of trees, open spaces, parks and other green spaces, and the connections between them, will provide access to nature. The City’s urban forest, which benefits humans, plants, animals, and microorganisms, will be promoted throughout the City. The Comprehensive Plan fosters energy and water conservation, healthy soils, and a sustainable water supply. During the life of this Comprehensive Plan, climate change is expected to affect Palo Alto’s physical infrastructure and natural ecology. To minimize these impacts, and to protect the natural environment, the City will maintain a holistic approach to managing its creek corridors, habitat areas and green infrastructure, which have been a source of civic pride. Implementation of the climate change adaptation strategies identified in the Comprehensive Plan will ensure that Palo Alto meets today’s needs without compromising the needs of future generations.

GSI references in other sections of the Comprehensive Plan include the following:

• Transportation Element
 o Policy T-4.7: Require new residential development projects to implement best practices for street design, stormwater management and green infrastructure.
 o Policy T-5.8: Promote vehicle parking areas designed to reduce stormwater runoff, increase compatibility with street trees and add visual interest to streets and other public locations...

• Program T5.8.1: Study the feasibility of retrofitting City-owned surface parking lots to implement best management practices for stormwater management and urban heat island mitigation, including green infrastructure, permeable pavement and reflective surfaces.

• Program T5.8.2: Identify incentives to encourage the retrofit of privately-owned surface parking areas to incorporate best management practices for stormwater management and urban heat island mitigation...

• Program T5.8.3: Update City requirements regarding trees and other landscaping that capture and filter stormwater within surface parking lots to take advantage of new technology.

• Natural Environment Element
 o Policy N-2.1: Recognize the importance of the urban forest as a vital part of the City’s natural and green infrastructure network that contributes to public health, resiliency, habitat values, appreciation of natural systems and an attractive visual character which must be protected and enhanced.

There are opportunities to expand GSI language and to clearly connect this Comprehensive Plan to the GSI Plan in the next update.
DEPARTMENT OF PUBLIC WORKS STRATEGIC PLAN (2016-2018)
The Department of Public Works Strategic Plan (2016-2018) describes the Department’s vision, mission and value statements. It guides the Department to make informed decisions about where to direct resources most efficiently, as well as outlines Division goals and how to measure progress towards accomplishing them.

Language to support the GSI Plan is adequately incorporated in the current Strategic Plan, as described below:

- Public Works Engineering Services Division 3-Year Strategic Goals, Key Performance Measures & Success Indicators
 - Reduce stormwater runoff and protect the quality of waters discharged to creeks and the Bay while improving the storm drain system.
 - Complete a Green Infrastructure work plan that includes Low Impact Design (LID) for drainage features in public and private streets, parking lots, roofs, etc., to reduce adverse water quality impacts of development and urban runoff.

The next update (planned for 2019) will reference GSI implementation progress.

PARKS, TRAILS, NATURAL OPEN SPACE AND RECREATION MASTER PLAN (2017)
The Parks, Trails, Natural Open Space and Recreation Master Plan (Parks Master Plan), updated in September 2017, presents the vision for the future of Palo Alto’s parks, trails, natural open space and recreation system, based on guiding principles, goals and concepts developed through a rigorous analysis of the existing system and a robust community engagement process. This Parks Master Plan incorporates sustainable best practices in the maintenance, management and development of facilities where consistent with ecological best practices and also promotes stormwater-friendly design.

The following Policy 6.E Programs support GSI:

- Program 6.E.16: Explore stormwater runoff capture opportunities in parks for recycling in irrigation.
- Program 6.E.19: Promote urban greening by integrating stormwater design into planting beds, reducing irrigation and providing interpretive information about park contributions to City water quality.
- Program 6.E.21: Ensure project designs for new facilities and retrofits will be consistent with sustainable design principles and practices. This includes evaluating all projects for opportunities to implement green stormwater infrastructure such as bioswales, stormwater planters, rain gardens, permeable pavers and porous concrete and asphalt.
- Program 6.E.22: Identify locations and develop swales, detention basins and rain gardens to retain and treat stormwater.

The next update of the Parks Master Plan will include language more specific to GSI and the GSI Plan. It is not considered a high priority, as this plan already supports the use of GSI, and staff is aware of moving towards integrating this approach in future work.

SEA LEVEL RISE ADAPTATION POLICY (2019)
The City’s Sea Level Rise Adaptation Policy was approved by City Council in March 2019. It will be followed by a Sea Level Rise (SLR) Implementation Plan to be completed in summer 2020. The Policy defines GSI and also lists various actions to be conducted by Departments deemed necessary to support the Policy. One of those actions is Watershed Protection serving as lead for implementation of the GSI Plan. Watershed Protection staff will remain involved to ensure further integration with the upcoming development of the SLR Implementation Plan.

SEWER SYSTEM MANAGEMENT PLAN (2017)
The City of Palo Alto Sewer System Management Plan describes the City’s procedures involved in the planning, management, and operation and maintenance of the City’s sanitary sewer system. It was last updated in November 2017. Sections of the document offer opportunity to incorporate language in support of the GSI Plan, which will be incorporated with the next update.

STORM DRAIN MASTER PLAN (2015)
The Storm Drain Master Plan (SDMP), updated in 2015, discusses the background, analysis, and proposed solutions for managing the City’s storm drain system.
The SDMP also includes design standards for larger infrastructure projects needed to provide a 10-year storm level of drainage service throughout the City. The document briefly describes MRP LID requirements and provides references (web links) for more information on LID and GSI. Chapter 6, Section 6.6, recommends the following:

“The City should consider incorporating LID elements into street and utility improvement projects. Elements, such as sidewalk storage, bioswales in park strips, and tree preservation, can slow rainwater discharge to the storm drain system, and may reduce nuisance ponding through additional storage, although are not intended to reduce discharge to the system during larger events such as the 10-year storm.”

However, the SDMP should be updated to ensure projects are properly vetted to include GSI (to treat smaller storms), that no opportunity is lost, and that the connection between the SDMP and the GSI Plan is strengthened and fully integrated. Implementation will involve establishing a policy for staff to consider this amended approach during the project scoping phase.

SUSTAINABILITY AND CLIMATE ACTION PLAN (2016)

The Sustainability and Climate Action Plan Framework (S/CAP), adopted by City Council in November 2016, is intended as a road map for development of subsequent Sustainability Implementation Plans. The S/CAP proposes high-level implementation pathways for how the City will continue its environmental stewardship, and exceed state requirements for greenhouse gas emission reductions. The S/CAP sets strategic direction and overall goals, and suggests initial priority actions. In particular, it calls out a need for a GSI policy, meeting MRP requirements, and considering GSI in future projects. Specific language incorporated in the S/CAP to support the GSI Plan includes:

- Climate Adaptation: Preparing for Change
 - Strategy: Build resilience considerations into City planning and capital projects, especially near the Bay shoreline.
 - Pursue “green infrastructure” as required by the RWQCB and as warranted by staff analysis; include supporting policies in the Comprehensive Plan Update aimed at increasing stormwater capture and infiltration.

- Regeneration and the Natural Environment
 - Strategy: Deploy Green Infrastructure.
 - Develop a green infrastructure policy
 - Require consideration of green infrastructure strategies whenever street or open space improvements may be made, including construction, landscaping and traffic calming projects.
 - Coordinate strategies across departments to leverage benefits. For example, reduced roadway and parking demand resulting from single occupancy vehicle-reducing transportation strategies would enable more permeable surfaces and water capture; include such economic benefits in analysis of those transportation projects.
 - Map City water flows and soil types to evaluate which types of green infrastructure investments and locations could provide greatest benefits.
 - Incentivize Green Roof Installation. Address through building policy or utility incentive the promotion of green roofs.
 - Establish City Policy on Green Streets and Green Parking Design.
 - Include Green Streets, alleys and curb cuts in street work, parking strips, planter areas of sidewalks, curb extensions, and street medians.
 - Establish City design policies to include green parking infrastructure in all new parking facilities.
 - Incorporate additional green infrastructure elements into parking lot designs, including permeable pavements installed in sections of a parking lot and rain gardens and bioswales included in medians and along a parking lot perimeter.

There is adequate language supporting the GSI Plan. The S/CAP will reference GSI progress in the 2020 Sustainability and Climate Action Plan Update.

SUSTAINABILITY IMPLEMENTATION PLAN (2017)

The 2018 -2020 Sustainability Implementation Plan (SIP), accepted in December 2017, is related to the
S/CAP and focuses on two key concerns – carbon dioxide (CO2) emissions and Water – and four key areas of activity: Energy, Mobility, Electric Vehicles, and Water. The key actions for Water include:

- Develop programs and ordinances to facilitate the use of non-traditional, non-potable water sources (e.g. graywater, stormwater, black water, etc.); and
- Develop a Green Stormwater (previously Storm Water) Infrastructure Plan to better capture and infiltrate stormwater back into the hydrologic cycle.

While the language supporting the GSI Plan is considered adequate, the SIP will reference GSI progress in its next update, which will be included in the 2020 Sustainability and Climate Action Plan Update.

URBAN FOREST MASTER PLAN (2015)

The Urban Forest Master Plan (UFMP), updated in May 2015, is a guide to how the City manages its urban forest. Elements of the UFMP include an analysis of current urban forest conditions and recommendations for future management and implementation actions. The following language to support the GSI Plan is incorporated in the UFMP:

- Vision Statement
 - Both tangible and intangible benefits of green infrastructure will be valued, and stewardship will reflect collaboration by City leaders, City staff, residents, property owners, business owners, and partners.

Although it currently supports the GSI Plan, language should be expanded in future updates to directly relate to the GSI Plan, especially regarding use of tree well filters and suspended pavement systems for capturing and treating stormwater. This will be addressed in the next update.

URBAN WATER MANAGEMENT PLAN (2016)

The City of Palo Alto Urban Water Management Plan describes the City’s water demands, water supply distribution system and reliability, and guides management of the water system. It was last updated in June 2016. Various sections of the document offer opportunity to incorporate language in support of the GSI Plan, which will be incorporated with the next update.
APPENDIX Q: Utilities Department—Electric Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)
APPENDIX S: Utilities Department—Wastewater Fund CIPs for 2019-2023 (FY18 Adopted Capital Budget)