For More Information

Where Our Water Comes From

Over 80% of the water we purchased in 2013 came from the San Francisco Public Utilities Commission (SFPUCC) from high Sierra snowmelt in Yosemite National Park. The remaining SFPUCC regional water supply system comes from local waterheds in Alameda and Santa Clara counties.

Our Drinking Water Sources

The City has a source of treated tap water and bottled water: rivers, lakes, streams, groundwater, rainwater, spring and well. Further regional water system operated by the SFPUCC, the major water source originates from spring water percolating through the Tasmanian Basin to the Hetch Hetchy Reservoir, where it is stored. The pristine water source is located in the well-protected Sierra region and meets all federal and state criteria for watershed protection. Based on the SFPUCC’s treatment practice, water transmission, extensive bacteria level quality monitoring, and high operational standards, the City has granted the Hetch Hetchy water source a filtration exemption.

In other words, the source is so clean and protected that this SFPUCC is not required to filter water from the Hetch Hetchy Reservoir. The Hetch Hetchy water is supplemented with treated water from the San Jose Water Treatment Plant (SJWTP) and the San Joaquin Water Treatment Plant (SWTP). Treatment processes include coagulation, flocculation, filtration, disinfection, ion exchange and corrosion control treatment.

Protecting Our Watershed

The SFPUCC actively and aggressively protects the natural resources entrusted to its care. An annual Health Hetchy Watershed survey evaluates the sanitary conditions, water quality and potential contaminant source. SFPUCC and its partners, including the National Park Service, manage the watershed to reduce or eliminate contaminant source. SFPUCC also conducts aquatic surveys to monitor the local Alameda and Pinalina freshwater fish species. For more information, identified risk and human activity as potential contamination source. To report these findings for more information, contact CDPH’s San Francisco District office at (650) 496-3274.

Drought Update

In 2014, the City of Palo Alto Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations. In August 2014, the Palo Alto City Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations. In August 2014, the Palo Alto City Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations. In August 2014, the Palo Alto City Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations. In August 2014, the Palo Alto City Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations. In August 2014, the Palo Alto City Council adopted a plan to save water in the future. The water supply management plan includes 5% water use reduction and adopt the State Water Resources Control Board to develop emergency drought regulations.
City of Palo Alto WATER QUALITY DATA FOR YEAR 2014(1)

DETECTED CONTAMINANTS

<table>
<thead>
<tr>
<th>Unit</th>
<th>MCL</th>
<th>PHG OR [MCLG]</th>
<th>RANGE OR [MIN]</th>
<th>AVERAGE OR [MAX]</th>
<th>MAJOR SOURCES IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (turbidity in water is a clarity indicator, it also indicates the effectiveness of the filtration plants)</td>
<td>5</td>
<td>N/A</td>
<td>0.2 - 0.4[3]</td>
<td>0.2</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Filter Water from Sunol Valley Water Treatment Plant (SVWTP)</td>
<td>NTU</td>
<td>1</td>
<td>N/A</td>
<td>[0.98]</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Filter Water from Henry Taft Water Treatment Plant (HTWTP)</td>
<td>NTU</td>
<td>1</td>
<td>N/A</td>
<td>[0.07]</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

DISINFECTION BYPRODUCTS AND PRECURSOR

| Total Trihalomethanes | ppm | N/A | 28 - 58 | 37.2 | Byproduct of drinking water disinfection |
| Chlorinated Acetate | ppm | 60 | N/A | 20 - 42 | 29.4 | Byproduct of drinking water disinfection |

Total Organic Carbon

- ppm | N/A | 7 - 77 | 46 |

MICROBIOLOGICAL

Plant (SVWTP)

- Filtered Water from Sunol Valley Water Treatment Plant (SVWTP) &
- Total Coliform - No P

OTHER WATER QUALITY PARAMETERS

Leach and Copper

<table>
<thead>
<tr>
<th>Unit</th>
<th>AL</th>
<th>PHG</th>
<th>RANGE</th>
<th>97TH PERCENTILE</th>
<th>TYPICAL SOURCES IN DRINKING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1300</td>
<td>300</td>
<td>2.1 - 344</td>
<td>Internal corrosion of household water plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>15</td>
<td>0.2</td>
<td>2 - 0</td>
<td>Internal corrosion of household water plumbing systems</td>
</tr>
</tbody>
</table>

OTHER WATER QUALITY PARAMETERS

Alkalinity (as CaCO3)

- ppm | N/A | 8 - 14 | 37 |

Bromide

- ppm | N/A | ND - 27 | 5 |

Calcium (as Ca)

- ppm | N/A | 3 - 20 | 11 |

Chlorate(10)

- ppm | 500 | N/A | 34 - 740 | 314 |

Hardness (as CaCO3)

- ppm | N/A | 7 - 37 | 46 |

Magnesium

- ppm | N/A | <0.2 - 4 | 3.9 |

pH

- ppm | N/A | 6.9 - 10.2 | 9.3 |

Potassium

- ppm | N/A | 0.2 - 1 | 0.6 |

Sodium

- ppm | N/A | 2 - 5 | 4 |

Silicon

- ppm | N/A | 2 - 14 | 10 |

Key

- "*" = less than / less than or equal to
- AL = Action Level
- MAE = Maximum
- Min = Minimum
- ND = Not Available
- N/A = Non-detect
- NTU = Nephelometric Turbidity Unit
- ORL = Other Regulatory Limit
- ppm = parts per billion
- ppb = parts per billion
- µS/cm = microsiemens / centimeter

Footnote

1. All units are based on flow at Federal drinking water health standards.
2. ppm = parts per million
3. ppb = parts per billion
4. NL = Notification Level
5. NTU = Nephelometric Turbidity Unit
6. ppm = parts per million
7. ppb = parts per billion
8. NTU = Nephelometric Turbidity Unit
9. ppm = parts per billion
10. µS/cm = microsiemens / centimeter

Key Water Quality Terms

Following are definitions of key terms noted on the adjacent water quality data table. These terms refer to the standards and goals for water quality described below.

PUBLIC HEALTH GOAL (PHG):

The level of a contaminant in drinking water below which there is known or expected risk to health. PHGs are set by the California Environmental Protection Agency (EPA).

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the US EPA.

MAXIMUM CONTAMINANT LEVEL (MCL):

The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or MCLGs (see definitions above) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste and appearance of drinking water.

MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG):

The level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL (MRDL):

The highest level of a disinfectant allowed in drinking water. There is evidence that addition of a disinfectant is necessary for control of microbial contaminants.

PRIMARY DRINKING WATER STANDARD (PDWS): MCL and MRL for contaminants that affect health along with monitoring and reporting requirements and water treatment requirements.

TREATMENT TECHNIQUE (TT): A required process intended to reduce the level of a contaminant in drinking water.

REGULATORY ACTION LEVEL: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. More information on contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline at (800) 426-4791.

(1) 2014 annual average is calculated using April 1, 2013 to March 31, 2014.

(2) The table contains the name of each contaminant, the applicable drinking water standards or regulation action levels, the goal for public health, the maximum amount detected in water, the typical contaminant source, and footnote explaining the findings. The State allows the SFPUC to establish limits for contaminants in water that must provide the same protection for public health. More information on contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline at (800) 426-4791.