Introduction

The objective of the Aquatic Habitat Assessment and Limiting Factors Analysis is to characterize channel and habitat condition with respect to factors limiting to steelhead populations in the San Francisquito Creek watershed. Data collection and analysis is necessary to evaluate these stressors for those limiting to aquatic habitat, steelhead trout (*Oncorhyncus mykiss*) populations, and specific steelhead life history stages within the watershed. However, a depth and breadth of studies have already been conducted within the watershed that can be incorporated into and provide a base for the current habitat assessment and the limiting factors analysis.

The outcome of this study will be an evaluation of the balance between stream sediment supply and transport capability and the consequent effects on aquatic habitat attributes (i.e. pool volume and filling, permeability of spawning gravels, stream bed and bank stability, streambed morphology, sediment storage, etc.), and characterization of streamflow, temperature, habitat structure, and water quality with reference to steelhead life history needs. Key questions to be answered by this study include:

- Are there other causes of aquatic habitat impairment?
- Is it valid to list San Francisquito Creek as impaired for sediment?
What areas of Los Trancos and Lower San Francisquito Creek subwatersheds are important to steelhead and why?

Where has steelhead habitat been impaired?

What aspects of the aquatic habitat have changed and what caused those changes?

What is the relative importance of these various habitat changes to steelhead?

What is the present trend of habitat changes in the system?

The fundamental focus of this effort is based on the 303(d) listing of San Francisquito Creek as impaired for sediment. The basis for the listing is “based primarily on a decline in native fish populations” (RWQCB 2004). If this hypothesis is true, the steelhead habitat, which is sensitive to the impacts of excess turbidity and sedimentation, will also be impaired, thus leading to a decline in the Steelhead population in the watershed. While significant work has been done on sediment supply and transport within the watershed, a focused assessment of steelhead habitat for indications of biological consequences due to sediment has not been completed. This is the crucial link in defining the basis and extent of sediment impairment in the watershed and will facilitate the development of future management strategies and actions within the San Francisquito Creek Watershed.

Geographic Scope

Due to resource constraints, the geographic scope of this study is limited to the lower mainstem of San Francisquito Creek and the Los Trancos Creek subwatershed within Santa Clara County. The tributaries of the upper San Francisquito creek watershed and the Bear Creek watershed within San Mateo County are currently not part of the geographic scope of this study.

Within that geographic scope, the habitat assessment will specifically focus on stream segments where steelhead utilization has been recorded or in potential steelhead spawning and rearing reaches. The watershed has been extensively studied for the occurrence of steelhead and other fishes within the watershed, but is best characterized by the following studies:

- Vogel 2002. An extensive snorkel survey of juvenile O. mykiss in Los Trancos Creek funded. The survey covered 2.3 miles of channel downstream and 1.6 miles upstream of the Felt Lake Diversion Dam in the spring of 2002. Fry and yearling trout were identified upstream and downstream of the diversion dam.

- Launer and Holtgreive 2000. A Stanford University study, in the summers of 1998 and 1999, of all fish populations in San Francisquito Creek and Los Trancos creeks. The survey was begun at the confluence of San Francisquito and Los Trancos creeks and went upstream to Searsville Dam on San Francisquito, and up to the Felt Lake Diversion fish ladder on Los Trancos. A small portion of Bear Creek was also surveyed in 1998. The study found that non-native fishes supported by Searsville...
Lake were not expanding their range into the rest of the watershed and that “moderate to high” densities of steelhead, including yearling trout.

- DFG 1995 and DFG 1976. Summer electrofishing surveys of Bear, Los Trancos, and San Francisquito Creeks in 1976 and 1992-1993. The effort was more extensive in 1992-1993, but steelhead were found in all streams during both surveys. However, more young of year trout were found upstream of the Felt Lake Diversion (before installation of the fish ladder in 1995), suggesting a self-sustaining rainbow trout population upstream of the diversion.

The mainstem of San Francisquito Creek, below the confluence with Los Trancos Creek, has been surveyed (DFG 1976, Leidy 1984, DFG 1995) and steelhead have been observed in the upper portions of this reach, but it is likely that the majority of the mainstem below the confluence is only used as a migration corridor.

Additionally all of the streams in the watershed were classified according to the Montgomery-Buffington (1993) stream classification system (NHC and Jones & Stokes 2004). This classification breakdown will also be compared to a recent spawning and rearing habitat analysis (NHC et al. 2002) in order to define reach breaks in the watershed that will facilitate a random sampling methodology of the reaches in the watershed utilized by steelhead. These defined reaches will allow the assessment to sample habitat characteristics across a range of channel types and tributary segments critical to steelhead production in the study area.

Literature/Data Review

The initial phase of this assessment was to collect and review relevant existing sources of data and literature for the San Francisquito Creek Watershed. This process is facilitated by peer review from relevant local experts and additional oversight from the various government and non-government entities that have a stake in the future of the watershed. The review will isolate the relevant studies that can be used in the habitat assessment and limiting factors analysis. The review also identified key habitat assessment methodologies and scientific literature to support the utilization of those methodologies that specifically addressed sediment and other watershed attributes in terms of steelhead habitat and survival. Additional work may be undertaken under this assessment, as appropriate, if the need is foreseen during this process or the initial stages of the field survey. If changes or additions are made to the protocol, the JPA, SCVWD, and the EAP would all be verbally consulted before implementation.

Data Gap Assessment

Data gaps are identified for the purpose of guiding inventory and research needs for this and future habitat studies in the San Francisquito Creek Watershed. Although the goal of the current study uses steelhead as an indicator of potential sediment impairment within the watershed, many of the information gaps relate to other native and non-native species and portions of the watershed outside of the geographic extent of the current study. In the
following paragraphs each potential limiting factor to be analyzed is discussed and assessed based on the amount of available data. Strategies and assessment methods that would resolve data gaps are discussed. Throughout the process, other limiting factors analyses, such as those in the Napa and Stevens Creek Watersheds, were consulted in order to maintain the consistency and repeatability of the assessment methods to be used in the San Francisquito Creek Watershed with those previous studies. This consistency facilitates consistency within the RWQCB’s TMDL process and defines the watershed within the context of the greater San Francisco Bay area.

Species Presence/Absence: Obviously, a key element in using a species as an indicator for impairment is the presence of that species. Given the extent of existing data (discussed under Geographic Scope) on the occurrence and utilization of the watershed by steelhead we do not see this as a data gap. Existing studies cover key life history stages of steelhead including spawning (SCVWD 2004) and rearing (Launer and Holtgrieve 2000, Vogel 2002). The long-term, consistent finding of juveniles and evidence of spawning clearly imply a viable steelhead population. However, there is very little escapement information or data on returning adults. This includes the absence of data on the timing of outmigration and returning adults (although this information can be assumed from juvenile presence studies and spawning data). While some additional outmigrant studies would help in comparisons of outmigration and flow timing, this does not currently appear to be the best utilization of the resources available for the current project.

Physical Barriers: Physical barriers (Dams, improperly sized weirs, etc.) can isolate returning adult steelhead from spawning reaches and can prevent juvenile trout from outmigrating into San Francisco Bay. Significant rigorous studies have been completed throughout the watershed to identify potential barriers to migration (Smith and Harden 2001, NHC et al. 2002, NHC et al. 2004). Given the extent of knowledge, this is not considered to be a data gap for San Francisquito Creek. Any work conducted in the channel during the habitat assessment will look for potential barriers, but this will only be done in conjunction with other survey protocols.

Flow: Flow can affect the ability of adult steelhead to access natal streams during spawning. Flow can also hamper the ability of juvenile trout to outmigrate during low flows or flush them out of the system before they are ready to outmigrate during flood flows. High flows can also scour out redds, greatly reducing spawning success. Studies have been completed to assess flow characteristics of the watershed and a good amount of data is available (Sokol 1964, Corps of Engineers 1972, Metzger 2002, NHC et al. 2002). The majority of focused flow information exists for spring flows, low summer flows, and winter peak flood events, but USGS data exists year-round for San Francisquito Creek. This allows for a complete assessment of flow in relation to all critical life history stages within the watershed. However, the majority of this data has not been looked at rigorously in terms of juvenile outmigration or the ability of returning adults to access spawning reaches. This will be assessed in the limiting factors analysis. Additional flow information may be acquired as part of the temperature modeling effort that would be added to this dataset.

Temperature: Temperatures in excess of 77° F can cause direct physiological impacts to *O. mykiss* or can create a barrier to the movement of steelhead in and out of the watershed. Temperature data has been collected throughout the watershed and in conjunction with a variety of studies. Temperature is a simple factor to record, but can be difficult to analyze
and place within the larger context of the watershed and the various influences on temperature. We would propose the installation of Stowaway temperature loggers for the period of study. Additionally, we would propose that a Shaded Riverine Aquatic (SRA) Cover analysis and flow measurements be completed in the reaches monitored for temperature in order to develop a simple model of temperature in San Francisquito Creek. This effort would likely focus on the lower urbanized, migratory reaches of mainstem San Francisquito Creek.

Sediment: Sediment can have a variety of effects on steelhead during all life history stages. Turbid water can impact *O. mykiss* by “clogging” or damaging the gills. The accumulation of fine sediment in gravels used for spawning can reduce gravel permeability and the ability of dissolved oxygen to reach redds. The filling of pools and the interstices of stream gravels, which provide refuge for young of year and yearling trout, can reduce the availability and/or quality of rearing habitat. Bed mobility, a function of flow regime and erosion potential, can result in the scouring of redds, as discussed in the flow section.

Gravel quality, for spawning and rearing, is largely a function of gravel permeability and embeddedness, respectively. Neither of these habitat characteristics has been extensively studied within the San Francisquito Creek Watershed. We propose field studies within the selected sample reaches using a modified standpipe (Barnard and McBain 1994) to measure gravel permeability in pool tail-outs and embeddedness measurements (Burns 1984, Skille and King 1989) in sample reach riffles. The possibility of pool filling by fine sediments has also not been studied. We propose using the modified V^* assessment (Hilton and Lisle 1993) to analyze the extent of pool filling in the San Francisquito Creek watershed.

Sufficient information exists to assess turbidity and bed mobility within the San Francisquito Creek watershed (NHC et al. 2003). No additional data collection is proposed.

Colorado State University is currently in the process of developing a district wide methodology for fluvial geomorphic assessment to be used by SCVWD. The proposed studies for the San Francisquito Creek Aquatic Habitat Assessment are specifically focused of the translation of geomorphic characteristics into impacts to steelhead and look at factors in different ways than they will be assessed in the CSU methodology. Assessments of embeddedness and pool filling will provide data complimentary to the proposed CSU methodology. However, gravel permeability measurements will be beyond the scope of the CSU methodology and will not likely provide useful data for the any fluvial geomorphic assessment.

Access: Santa Clara Valley Water District has existing access agreements that provide access along the mainstem of San Francisquito Creek, from Camino Real to the confluence with Los Trancos Creek. Access is available along Los Trancos Creek from the confluence up to just above the Felt Lake Diversion. The majority of access is provided through Stanford University and is coordinated through Stanford Property Management, The Stanford Golf Course, and Stanford Utilities, for the diversion area of Los Trancos Creek. However, these agreements end in December of 2004 and will likely have to be extended to facilitate any work done in early 2005. Properties accessed will be notified the week before surveys, as outlined in the access agreements.
Conclusions

Current gaps in available information may limit the ability to implement an effective management and restoration strategy. As information becomes available, it needs to be incorporated into the activities of agencies and stakeholders regulating habitat and land use. The current study seeks to resolve data gaps, particularly those related to the categorization of San Francisquito Creek as impaired due to excessive fine sediment. The conclusions of this memorandum are summarized in Table 1 (following page).
<table>
<thead>
<tr>
<th>Life Cycle</th>
<th>Potential Limiting Factors</th>
<th>Data and Gaps</th>
<th>Potential Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Upstream Migration</td>
<td>Attraction flows
Migration barriers: (e.g. dams, dewatered reaches, inadequate flows, channel braiding, natural falls, culverts, road crossings, and water temperature)
Migration corridor hazards (e.g. bypasses, poaching)</td>
<td>Data Gap
Smith and Harden, USGS 2004
Launer and Holtgrieve 1999</td>
<td>None proposed. Interruption and/or masking of attraction flows is not known to occur
Juvenile Outmigration Barrier Analysis</td>
</tr>
<tr>
<td>Spawning and Incubation</td>
<td>Spawning gravel quantity/redd superimposition
Spawning gravel quality (e.g. intergravel flow, sedimentation, armoring)
Water quality and temperature
Substrate mobility and scouring
Redd dewatering</td>
<td>Data Gap
Data Gap
Several Sources (SCVWD 2004, City of Palo Alto, Stanford)
NHC et al. 2003</td>
<td>Redd Identification, Embeddedness, and Gravel Permeability
Gravel Permeability, Embeddedness
Temperature and Dissolved Oxygen Measurements
Additional bulk sampling and visual observations
Flow analysis, modeling, and permeability measurements</td>
</tr>
<tr>
<td>Early Rearing</td>
<td>Availability of suitable stream margin habitat for fry rearing
Rearing habitat/spawning area proximity
Water quality (e.g. temperature, toxics)
Predation
Food availability
Stranding by low flows
Displacement by high flows</td>
<td>Data Gap
Data Gap
SCVWD 2004
Several Sources (SCVWD 2004, City of Palo Alto, Stanford)
Data Gap
Carter and Fend 2000
Metzger 2002</td>
<td>Visual assessment of banks
Sample reach assessment and redd identification
Temperature and Dissolved Oxygen Measurements
None proposed
macroinvertebrate survey
Flow analysis and modeling
Flow analysis and modeling</td>
</tr>
<tr>
<td>Juvenile Rearing</td>
<td>Availability of summer habitat (e.g. pools, temperature refugia, SRA)
Availability of winter habitat (e.g. in-channel LWD, interstitial habitat)
Stranding by low flows
Displacement by high flows
Predation
Food availability
Interspecific interactions with native species
Competition with introduced species
Water quality/temperature</td>
<td>Data Gap
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap</td>
<td>SCVWD 2004
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap
Data Gap</td>
</tr>
<tr>
<td>Smolting and Outmigration</td>
<td>Adequate flows for outmigration
Water quality and temperature
Predation, poaching</td>
<td>Data Gap
Data Gap
Data Gap
Data Gap</td>
<td>Flow analysis and modeling
Temperature and Dissolved Oxygen Measurements
None proposed</td>
</tr>
</tbody>
</table>
Literature Cited in the Memorandum

California Department of Fish and Game. 1976. San Francisquito Creek drainage streamflow measurements and fish sampling. Walk of Bear Creek to San Francisquito Creek (June 24). Menlo Park.

California Department of Fish and Game. 1995. Biological Assessment of San Francisquito Creek to document status of steelhead trout prior to removal to barriers to migration.

sediment impact study. Stanford University, Facilities Operation. 186 p and Appendices.

Project Bibliography

San Francisquito Creek Studies

California Department of Fish and Game. 1976. San Francisquito Creek drainage streamflow measurements and fish sampling. Walk of Bear Creek to San Francisquito Creek (June 24). Menlo Park.

California Department of Fish and Game. 1995. Biological Assessment of San Francisquito Creek to document status of steelhead trout prior to removal to barriers to migration.

Coyote Creek Riparian Station. 1998. San Francisquito Creek upper watershed volunteer monitoring program (November 97 to October 98). San Francisquito Creek Coordinated Resource Management and Planning.

San Mateo County. 1986. San Mateo county general plan. San Mateo County, Department of Environmental Management, Planning and Building Division, San Mateo County, CA.

Wieczorek, G.F. 1982. Map showing recently-active and dormant landslides near La Honda, central Santa Cruz Mountains, California. USGS Miscellaneous Field Studies Map MF-1422. Scale 1:4,800.

Sediment

Taylor, F. and E. Brabb. 1972. Maps showing distribution and cost by counties of structurally damaging landslides in the San Francisco Bay region, California, winter of 1968-69. USGS Miscellaneous Field Studies Map MF-327. Scales 1:500,000 and 1:1,000,000.

Taylor, F., T. Nilsen and R. Dean. 1975. Distribution and costs of landslides that have damaged manmade structures during the rainy season of 1972-73 in the San Francisco Bay region, California. USGS Miscellaneous Field Studies Map MF-679. Scales 1:500,000 and 1:1,000,000.

Spawning Gravel

Habitat Characterization

Stillwater Sciences. In prep. Limiting Factors Analysis of Stevens Creek.

Temperature and Flow

